Spinal Alterations of Reil Insula in Alzheimer’s Disease

2017 ◽  
Vol 32 (4) ◽  
pp. 222-229 ◽  
Author(s):  
Foivos E. Petrides ◽  
Ioannis A. Mavroudis ◽  
Martha Spilioti ◽  
Fotios G. Chatzinikolaou ◽  
Vasiliki G. Costa ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that involves numerous cellular and biochemical mechanisms resulting in synaptic alterations and extensive neuronal loss. It is primarily characterized by impairment of memory, associated frequently with mood disorders. Continuous studies have shown that insula may be an important target of AD, but neuropathological alterations have not been described extensively. In the present study, we attempted to describe the morphometric and morphological changes of the spines of Reil insula in AD in comparison with normal aging using a silver impregnation technique. We classified spines into 3 types: (1) long neck, (2) short stubby, and (3) other types; and we measured and correlated the length of them in normal controls and in individuals with AD using ImageJ application. Statistical analysis was based on the Student t test on the basis of 360 cells in SPSS v.17.0, and significance was taken as P < .05.

2015 ◽  
Vol 73 (2) ◽  
pp. 159-162 ◽  
Author(s):  
Eliasz Engelhardt ◽  
Marleide da Mota Gomes

Initially the trajectory of the historical forerunners and conceptions of senile dementia are briefly presented, being highlighted the name of Alois Alzheimer who provided clinical and neuropathological indicators to differentiate a group of patients with Senile dementia. Alzheimer's examination of Auguste D’s case, studied by him with Bielschowsky’s silver impregnation technique, permitted to identify a pathological marker, the intraneuronal neurofibrillary tangles, characterizing a new disease later named after him by Kraepelin – Alzheimer’s disease. Over the time this disorder became one of the most important degenerative dementing disease, reaching nowadays a status that may be considered as epidemic.


2000 ◽  
Vol 12 (S1) ◽  
pp. 231-235 ◽  
Author(s):  
Trey Sunderland

The identification of cholinergic contributions to the dysfunction in patients with Alzheimer's disease (AD) appears straightforward at first. However, complicating questions arose more than a decade ago. For example, why, if AD patients indeed experienced cholinergic damage, was the number of cholinergic receptors similar in both AD patients and normal controls at autopsy? Researchers speculated about the possibility of an upregulation of cholinergic receptors in response to the loss of functional receptors subsequent to presynaptic cholinergic neuronal loss. This led to research on the consequences of administering a cholinergic antagonist rather than an agonist in AD patients as a pharmacologic challenge test in an attempt to test the functional sensitivity of the remaining cholinergic receptors.


2020 ◽  
Author(s):  
E Yousefzadeh-Nowshahr ◽  
G Winter ◽  
K Bohn ◽  
K Kneer ◽  
C von Arnim ◽  
...  

2018 ◽  
Vol 15 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Jiri Cerman ◽  
Ross Andel ◽  
Jan Laczo ◽  
Martin Vyhnalek ◽  
Zuzana Nedelska ◽  
...  

Background: Great effort has been put into developing simple and feasible tools capable to detect Alzheimer's disease (AD) in its early clinical stage. Spatial navigation impairment occurs very early in AD and is detectable even in the stage of mild cognitive impairment (MCI). Objective: The aim was to describe the frequency of self-reported spatial navigation complaints in patients with subjective cognitive decline (SCD), amnestic and non-amnestic MCI (aMCI, naMCI) and AD dementia and to assess whether a simple questionnaire based on these complaints may be used to detect early AD. Method: In total 184 subjects: patients with aMCI (n=61), naMCI (n=27), SCD (n=63), dementia due to AD (n=20) and normal controls (n=13) were recruited. The subjects underwent neuropsychological examination and were administered a questionnaire addressing spatial navigation complaints. Responses to the 15 items questionnaire were scaled into four categories (no, minor, moderate and major complaints). Results: 55% of patients with aMCI, 64% with naMCI, 68% with SCD and 72% with AD complained about their spatial navigation. 38-61% of these complaints were moderate or major. Only 33% normal controls expressed complaints and none was ranked as moderate or major. The SCD, aMCI and AD dementia patients were more likely to express complaints than normal controls (p's<0.050) after adjusting for age, education, sex, depressive symptoms (OR for SCD=4.00, aMCI=3.90, AD dementia=7.02) or anxiety (OR for SCD=3.59, aMCI=3.64, AD dementia=6.41). Conclusion: Spatial navigation complaints are a frequent symptom not only in AD, but also in SCD and aMCI and can potentially be detected by a simple and inexpensive questionnaire.


2018 ◽  
Vol 15 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Gennaro Ruggiero ◽  
Alessandro Iavarone ◽  
Tina Iachini

Objective: Deficits in egocentric (subject-to-object) and allocentric (object-to-object) spatial representations, with a mainly allocentric impairment, characterize the first stages of the Alzheimer's disease (AD). Methods: To identify early cognitive signs of AD conversion, some studies focused on amnestic-Mild Cognitive Impairment (aMCI) by reporting alterations in both reference frames, especially the allocentric ones. However, spatial environments in which we move need the cooperation of both reference frames. Such cooperating processes imply that we constantly switch from allocentric to egocentric frames and vice versa. This raises the question of whether alterations of switching abilities might also characterize an early cognitive marker of AD, potentially suitable to detect the conversion from aMCI to dementia. Here, we compared AD and aMCI patients with Normal Controls (NC) on the Ego-Allo- Switching spatial memory task. The task assessed the capacity to use switching (Ego-Allo, Allo-Ego) and non-switching (Ego-Ego, Allo-Allo) verbal judgments about relative distances between memorized stimuli. Results: The novel finding of this study is the neat impairment shown by aMCI and AD in switching from allocentric to egocentric reference frames. Interestingly, in aMCI when the first reference frame was egocentric, the allocentric deficit appeared attenuated. Conclusion: This led us to conclude that allocentric deficits are not always clinically detectable in aMCI since the impairments could be masked when the first reference frame was body-centred. Alongside, AD and aMCI also revealed allocentric deficits in the non-switching condition. These findings suggest that switching alterations would emerge from impairments in hippocampal and posteromedial areas and from concurrent dysregulations in the locus coeruleus-noradrenaline system or pre-frontal cortex.


2021 ◽  
Vol 22 (15) ◽  
pp. 7911
Author(s):  
Eugene Lin ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer’s disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boris Guennewig ◽  
Julia Lim ◽  
Lee Marshall ◽  
Andrew N. McCorkindale ◽  
Patrick J. Paasila ◽  
...  

AbstractTau pathology in Alzheimer’s disease (AD) spreads in a predictable pattern that corresponds with disease symptoms and severity. At post-mortem there are cortical regions that range from mildly to severely affected by tau pathology and neuronal loss. A comparison of the molecular signatures of these differentially affected areas within cases and between cases and controls may allow the temporal modelling of disease progression. Here we used RNA sequencing to explore differential gene expression in the mildly affected primary visual cortex and moderately affected precuneus of ten age-, gender- and RNA quality-matched post-mortem brains from AD patients and healthy controls. The two regions in AD cases had similar transcriptomic signatures but there were broader abnormalities in the precuneus consistent with the greater tau load. Both regions were characterised by upregulation of immune-related genes such as those encoding triggering receptor expressed on myeloid cells 2 and membrane spanning 4-domains A6A and milder changes in insulin/IGF1 signalling. The precuneus in AD was also characterised by changes in vesicle secretion and downregulation of the interneuronal subtype marker, somatostatin. The ‘early’ AD transcriptome is characterised by perturbations in synaptic vesicle secretion on a background of neuroimmune dysfunction. In particular, the synaptic deficits that characterise AD may begin with the somatostatin division of inhibitory neurotransmission.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinyan Liang ◽  
Haijian Wu ◽  
Mark Colt ◽  
Xinying Guo ◽  
Brock Pluimer ◽  
...  

: Alzheimer’s Disease (AD) is the most prevalent form of dementia across the world. While its discovery and pathological manifestations are centered on protein aggregations of amyloid-beta (Aβ) and hyperphosphorylated tau protein, neuroinflammation has emerged in the last decade as a main component of the disease in both pathogenesis and progression. As the main innate immune cell type in central nervous system (CNS), microglia play a very important role in regulating neuroinflammation, which occurs commonly in neurodegenerative conditions including AD. Under inflammatory response, microglia undergo morphological changes and status transition from homeostatic to activated forms. Different microglia subtypes displaying distinct genetic profiles have been identified in AD, and these signatures often link to AD risk genes identified from the genome-wide association studies (GWAS), such as APOE and TREM2. Furthermore, many of AD risk genes are highly enriched in microglia and specifically influence the functions of microglia in pathogenesis, e.g. releasing inflammatory cytokines and clearing Aβ. Therefore, building up a landscape of these risk genes in microglia, based on current preclinical studies and in the context of their pathogenic or protective effects, would largely help us to understand the complexed etiology of AD and provide new insight for the unmet need of effective treatment.


Sign in / Sign up

Export Citation Format

Share Document