scholarly journals Huaier Extractum Promotes Dendritic Cells Maturation and Favors them to Induce Th1 Immune Response: One of the Mechanisms Underlying Its Anti-Tumor Activity

2020 ◽  
Vol 19 ◽  
pp. 153473542094683
Author(s):  
Jun Pan ◽  
Zhou Jiang ◽  
Dang Wu ◽  
Chenghui Yang ◽  
Zhen Wang ◽  
...  

Huaier, a sandy beige mushroom with anti-tumor effects, has been applied into Traditional Chinese Medicine for more than 1600 years. Previous studies showed that Huaier exerted its anti-tumor effects not only by direct action on tumor cells, but also indirectly by modulation of immune function. In the present study, we found that Huaier treatment significantly repressed tumor growth in mice with 4T1 breast cancer and resulted in significant accumulation of CD4+ T cells and mature dendritic cells (DCs) in the tumor microenvironment. In vitro experiments demonstrated that Huaier treatment promoted both DC2.4 and bone marrow derived DCs (BMDCs) to express costimulatory molecules, enhance production of IL-1β and IL-12p70, while it inhibited their phagocytic activities, suggesting that Huaier treatment promotes maturation of DCs. Furthermore, we found Huaier-treated DCs profoundly stimulated proliferation of alloreactive CD4+ T cells and drove them to differentiate into Th1 subset. Expression of PI3K, Akt, p-Akt, JNK, and p-JNK was up-regulated, while p-p38 MAPK was down-regulated in Huaier-treated BMDCs, suggesting that Huaier promotes maturation of DCs with potent ability to activate Th1 immune response via modulation of MAPK and PI3K/Akt signaling pathways. Our findings provide further evidence for the mechanisms underlying the anti-tumor activity of Huaier.

2016 ◽  
Vol 213 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Samuele Calabro ◽  
Antonia Gallman ◽  
Uthaman Gowthaman ◽  
Dong Liu ◽  
Pei Chen ◽  
...  

Red blood cell (RBC) transfusion is a life-saving therapeutic tool. However, a major complication in transfusion recipients is the generation of antibodies against non-ABO alloantigens on donor RBCs, potentially resulting in hemolysis and renal failure. Long-lived antibody responses typically require CD4+ T cell help and, in murine transfusion models, alloimmunization requires a spleen. Yet, it is not known how RBC-derived antigens are presented to naive T cells in the spleen. We sought to answer whether splenic dendritic cells (DCs) were essential for T cell priming to RBC alloantigens. Transient deletion of conventional DCs at the time of transfusion or splenic DC preactivation before RBC transfusion abrogated T and B cell responses to allogeneic RBCs, even though transfused RBCs persisted in the circulation for weeks. Although all splenic DCs phagocytosed RBCs and activated RBC-specific CD4+ T cells in vitro, only bridging channel 33D1+ DCs were required for alloimmunization in vivo. In contrast, deletion of XCR1+CD8+ DCs did not alter the immune response to RBCs. Our work suggests that blocking the function of one DC subset during a narrow window of time during RBC transfusion could potentially prevent the detrimental immune response that occurs in patients who require lifelong RBC transfusion support.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Michel Gilliet ◽  
Martin Kleinhans ◽  
Erica Lantelme ◽  
Dirk Schadendorf ◽  
Günter Burg ◽  
...  

Abstract Dendritic cells (DCs) represent the most potent antigen-presenting cells of the immune system capable of initiating primary immune responses to neoantigens. Here we characterize the primary CD4 T-cell immune response to protein keyhole limpet hemocyanin (KLH) in 5 metastatic melanoma patients undergoing a tumor peptide–based dendritic cell vaccination trial. Monocyte-derived dendritic cells displaying a semimature phenotype, as defined by surface markers, were loaded ex vivo with antigen and injected intranodally at weekly intervals for 4 weeks. All patients developed a strong and long-lasting delayed-type hypersensitivity reactivity to KLH, which correlated with the induction of KLH-dependent proliferation of CD4 T cells in vitro. Secondary in vitro stimulation with KLH showed significant increase in interferon-γ and interleukin-2 (IL-2) but not IL-4, IL-5, nor IL-10 secretion by bulk T cells. On the single-cell level, most TH1 cells among in vitro–generated KLH-specific T-cell lines confirmed the preferential induction of a KLH-specific type 1 T helper immune response. Furthermore, the induction of KLH-specific antibodies of the IgG2 subtype may reflect the induction of a type 1 cytokine profile in vivo after vaccination. Our results indicate that intranodal vaccination with semimature DCs can prime strong, long-lasting CD4 T-cell responses with a TH1-type cytokine profile in cancer patients. (Blood. 2003;102:36-42)


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
A. K. Carvalho ◽  
K. Carvalho ◽  
L. F. D. Passero ◽  
M. G. T. Sousa ◽  
V. L. R. da Matta ◽  
...  

Leishmania (L.) amazonensis(La) andL. (V.) braziliensis(Lb) are responsible for a large clinical and immunopathological spectrum in human disease; whileLamay be responsible for anergic disease,Lbinfection leads to cellular hypersensitivity. To better understand the dichotomy in the immune response caused by theseLeishmaniaspecies, we evaluated subsets of dendritic cells (DCs) and T lymphocyte in draining lymph nodes during the course ofLaandLbinfection in BALB/c mice. Our results demonstrated a high involvement of DCs inLainfection, which was characterized by the greater accumulation of Langerhans cells (LCs); conversely,Lbinfection led to an increase in dermal DCs (dDCs) throughout the infection. Considering the T lymphocyte response, an increase of effector, activated, and memory CD4+T-cells was observed inLbinfection. Interleukin- (IL-) 4- and IL-10-producing CD4+and CD8+T-cells were present in bothLaandLbinfection; however, interferon- (IFN-)γ-producing CD4+and CD8+T-cells were detected only inLbinfection. The results suggest that duringLbinfection, the dDCs were the predominant subset of DCs that in turn was associated with the development of Th1 immune response; in contrastLainfection was associated with a preferential accumulation of LCs and total blockage of the development of Th1 immune response.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5131-5131
Author(s):  
Mei Zhang ◽  
Xiaoran Yin ◽  
Yunya Luo ◽  
Xiu Lin ◽  
Pengcheng He ◽  
...  

Abstract As the most potent antigen-presenting cells, Dendritic cells (DCs), capable of inducing immune responses from naive T cells, are operative tools for tumor immunotherapy. Derived DCs are extremely effective in capturing and presentation of antigens to T cells and play a key role in the induction of cytotoxic T lymphocytes (CTLs). In vitro culture system containing the combination of GM-CSF, IL-4 and TNF-α cytokine can affect CD14 + progenitor cells from mononuclear cells (MNCs) of peripheral blood (PB) developing into functional DCs, which have enough quantities for application in vitro researches and clinical practices. Multiple myeloma cells(MM)are able to secrete a great quantity of immunoglobulin (Ig) expressing idiotypic antigen called idiotype (Id) in its mutational hotspot. This kind of idiotypic structure regions also expressing on the surface of MM cells are high specific autologous tumor associated antigen (TAA). The combination use of DCs and tumor specific antigen can improve the immunogenicity of MM cells and stimulate specific anti-tumor immunological response effectively, so by using this new kind of DC tumor vaccine, following high dose chemical therapy, the tiny residual pathological changes might be cleared totally in the future. To investigate the specific antitumor immune response induced by Id-pulsed dendritic cells(DCs) in vitro. DCs were generated from peripheral blood monocytes of the multiple myeloma(MM) patients using GM-CSF, IL-4, and TNF-α. pulsed with idiotype protein at the immature stage, DCs could activate T cells to become tumor specific cytotoxic T lymphocytes (CTLs). The morphologic characteristics of those cells were observed with light and electron microscopes. The phenotypic figures were analyzed with FACS analysis. Methy-thiazoly-Tetrazolium (MTT) assay was employed to evaluate the effect of proliferation of autologous T cells and the inhibition rate of CTL on MM cells. DCs precursors in peripheral blood could be induced to typical mature DCs in medium containing GM-CSF, IL-4 and TNF-α. Mature DCs with Id could operatively increase proliferation of the autologous T cells and active naive T cells to become tumor specialized CTLs. Any doses of CTLs had significant inhibition or killing ability on autologous MM cells. These results suggest in suitable cytokine environment, the precursors in peripheral blood of MM patients could be induced to functional DCs, and vaccination with Id-pulsed DCs could induce active antitumor immune response. Multiple cycles of immunization using DC as APC in vitro can be beneficial in generating antigen- specific T cells from normal PBMC, and Id an auto-specific tumor antigen, can be got with ammonium sulfate four-step precipitated method, By digestion of pepsin and affinity chromatography so as to stimulate MM specific immunological responce, and Id-pulsed mature DCs from MM patients can stimulate not only the proliferation of autologous T cells, but also the specific CTL immune response against autologous MM cells. In addition, in vitro immunization may provide an alternative approach to in vivo immunization of MM. We believe that DCs vaccine can bring the breakthrough of therapy to MM in the near future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Zhang ◽  
Aie Chang ◽  
Yanqiang Zou ◽  
Heng Xu ◽  
Jikai Cui ◽  
...  

Background: Dendritic cells (DCs) serve as an important part of the immune system and play a dual role in immune response. Mature DCs can initiate immune response, while immature or semi-mature DCs induce immune hyporesponsiveness or tolerance. Previous studies have shown that aspirin can effectively inhibit the maturation of DCs. However, the protective effect of aspirin on acute cardiac allograft rejection has not been studied. The aim of this study was to elucidate the effect of aspirin exert on allograft rejection.Methods: The model of MHC-mismatched (BALB/c to B6 mice) heterotopic heart transplantation was established and administered intraperitoneal injection with aspirin. The severity of allograft rejection, transcriptional levels of cytokines, and characteristics of immune cells were assessed. Bone marrow-derived dendritic cells (BMDCs) were generated with or without aspirin. The function of DCs was determined via mixed lymphocyte reaction (MLR). The signaling pathway of DCs was detected by Western blotting.Results: Aspirin significantly prolonged the survival of cardiac allograft in mouse, inhibited the production of pro-inflammatory cytokines and the differentiation of effector T cells (Th1 and Th17), as well as promoted the regulatory T cells (Treg). The maturation of DCs in the spleen was obviously suppressed with aspirin treatment. In vitro, aspirin decreased the activation of NF-κB signaling of DCs, as well as impeded MHCII and co-stimulatory molecules (CD80, CD86, and CD40) expression on DCs. Moreover, both the pro-inflammatory cytokines and function of DCs were suppressed by aspirin.Conclusion: Aspirin inhibits the maturation of DCs through the NF-κB signaling pathway and attenuates acute cardiac allograft rejection.


2000 ◽  
pp. 300-306 ◽  
Author(s):  
M Schott ◽  
J Feldkamp ◽  
D Schattenberg ◽  
T Krueger ◽  
C Dotzenrath ◽  
...  

BACKGROUND: Cytotoxic T-lymphocyte-mediated tumor immunity against major histocompatibility antigen class II-negative tumors requires help from CD4(+) T-cells. The major antigen presenting cells for CD4(+) cell activation are dendritic cells. Studies in mice and humans have demonstrated the potent capacity of these cells to induce specific antitumor immunity. OBJECTIVE: To control the growth of a metastasized parathyroid carcinoma, by immunizing a patient with tumor lysate and parathyroid hormone-pulsed dendritic cells. DESIGN AND METHODS: Mature dendritic cells were generated from peripheral blood monocytes in the presence of granulocyte/macrophage colony-stimulating factor, interleukin-4 and tumor necrosis factor alpha. Antigen-loaded dendritic cells were delivered by subcutaneous and intralymphatical injections. After five cycles, we added keyhole limpet hemocyanin (KLH) as a CD4(+) helper antigen. RESULTS: After 10 vaccinations, a specific cellular immune response to tumor lysate was observed. In vitro T-cell proliferation assays revealed a dose-dependent stimulation index of 1.8-5.7 compared with 0.9-1.1 before vaccination. In vivo immune response was demonstrated by positive delayed-type hypersensitivity toward tumor lysate. Intradermal injection of tumor lysate resulted in an erythema and induration, suggesting the efficient generation of tumor lysate-specific memory T-cells. CONCLUSIONS: These data indicate that dendritic cell vaccination can induce in vitro and in vivo responses in a highly malignant endocrine carcinoma. Regardless of the clinical outcome of our patient, this approach might be generally applicable to other advanced, radio- and chemotherapy-resistant endocrine malignancies, such as adrenal carcinomas and metastasized medullary and anaplastic thyroid carcinomas.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2208
Author(s):  
Haibo Feng ◽  
Xiaonong Yang ◽  
Linzi Zhang ◽  
Qianqian Liu ◽  
Yangyang Feng ◽  
...  

The mannose receptor (MAN-R)-targeted delivery system is commonly used to deliver antigens to macrophages or immature dendritic cells (DCs) to promote the efficiency of antigen presentation. To maximize the enhancement effects of chitosan (CS) and induce an efficient humoral and cellular immune response against an antigen, we encapsulated ovalbumin (OVA) in poly(lactic-co-glycolic acid) (PLGA) microspheres (MPs) and conjugated it with MAN-modified CS to obtain MAN-R-targeting nano-MPs (MAN-CS-OVA-PLGA-MPs). The physicochemical properties, drug loading rate, and immunomodulation activity of MAN-CS-OVA-PLGA-MPs were evaluated. In vitro, MAN-CS-OVA-PLGA-MPs (80 μg mL−1) could enhance the proliferation of DCs and increase their phagocytic efficiency. In vivo, MAN-CS-OVA-PLGA-MPs significantly increased the ratio of CD3+CD4+/CD3+CD8+ T cells, increased CD80+, CD86+, and MHC II expression in DCs, and improved OVA-specific IgG, IgG1, IgG2a, and IgG2b antibodies. Moreover, MAN-CS-OVA-PLGA-MPs promoted cytokine (IFN-γ, IL-4, and IL-6) production in mice. Taken together, our results show that MAN-CS-OVA-PLGA-MPs may act by activating the T cells to initiate an immune response by promoting the maturation of dendritic cells and improving their antigen presentation efficiency. The current study provides a basis for the use of MAN-CS-OVA-PLGA-MPs as an antigen and adjuvant delivery system targeting the MAN-R on the surface of macrophages and dendritic cells.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Hongying Zhao ◽  
Yu Wang ◽  
Xiubao Ren

Abstract Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49378 ◽  
Author(s):  
Kaili Zhong ◽  
Wengang Song ◽  
Qian Wang ◽  
Chao Wang ◽  
Xi Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document