Advanced Control Room Design Review Guidelines: Merging Old and New

1992 ◽  
Vol 36 (4) ◽  
pp. 423-427
Author(s):  
Richard J. Carter ◽  
Jerry A. Wachtel

The nuclear power industry is currently developing operator interface systems based on innovative applications of digital computers. To assure that this advanced technology is incorporated in a way that maximizes the potential safety benefits of the technology and minimizes the potential negative effects on human performance, human factors principles must be considered. NUREG-0700 contains guidelines for the review of operator interfaces. However, in light of the rapid technological advances in digital technology which have taken place in the eleven years since its publication, it is no longer adequate to assess the rapidly changing human-system interfaces. A research program, the purpose of which is to upgrade NUREG-0700, has been initiated. Thus far a set of draft advanced control room design review (ACRDR) guidelines has been complied. Three tasks, which were oriented towards integrating the applicable guidelines in NUREG-0700 into the ACRDR document, are described in the paper.

Author(s):  
Christian Hessler ◽  
Tobias Scharf

Screen-based human-machine interfaces, having been standard for many years in most process industries, are now also well acknowledged in the main control room of nuclear power plants. Being a standard feature of digital I&C systems, they offer significant benefits and interesting options for control room design, but also constitute challenges for the designer. Attractive opportunities for the designer and operator are for example the minimization of equipment, compared to design of hardwired panels, the reduction of cabling and cable separation issues, the flexibility and increased possibility for customization to specific utilities and operator needs. However, this flexibility brings also new challenges to the design, for new builds as well as for plant modernization projects, such as ensuring overall situation awareness of the operator, in spite the intrinsically serial character of information presentation, and the need to integrate different, even diverse digital human-machine interfaces of the safety and non-safety I&C systems. The reference concept of AREVA NP for all projects involving control room design relies on an overall I&C architecture, based on the TELEPERM XS for safety I&C systems, and Siemens SPPA T2000. SPPA T2000’s OM690 screen-based monitoring and control system is used as the integrated main operator interface, supporting plant operation in all plant states. Additionally control boards are used to implement a separate safety panel satisfying nuclear safety qualification requirements. These components are used to tailor the design of main control room, remote shut-down stations and local control stations, in accordance with licensing requirements, utility expectations and operating staff needs.


1982 ◽  
Vol 26 (7) ◽  
pp. 659-663
Author(s):  
Les Ainsworth

The American and British nuclear power programmes have in the past taken divergent routes, with the Americans choosing pressurized water reactors, whilst the British have opted for gas cooling. Although the technology and plant design for these two systems encompasses many fundamental differences, some of which have ramifications for the controllers, the basic task of monitoring and controlling a reactor holds many similarities in both countries. It is therefore instructive to compare and contrast the approaches which have been taken to human factors in nuclear power plant control room design on both sides of the Atlantic.


Sign in / Sign up

Export Citation Format

Share Document