process industries
Recently Published Documents


TOTAL DOCUMENTS

1574
(FIVE YEARS 250)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-23
Author(s):  
Junyang Shi ◽  
Xingjian Chen ◽  
Mo Sha

IEEE 802.15.4-based wireless sensor-actuator networks have been widely adopted by process industries in recent years because of their significant role in improving industrial efficiency and reducing operating costs. Today, industrial wireless sensor-actuator networks are becoming tremendously larger and more complex than before. However, a large, complex mesh network is hard to manage and inelastic to change once the network is deployed. In addition, flooding-based time synchronization and information dissemination introduce significant communication overhead to the network. More importantly, the deliveries of urgent and critical information such as emergency alarms suffer long delays, because those messages must go through the hop-by-hop transport. A promising solution to overcome those limitations is to enable the direct messaging from a long-range radio to an IEEE 802.15.4 radio. Then messages can be delivered to all field devices in a single-hop fashion. This article presents our study on enabling the cross-technology communication from LoRa to ZigBee using the energy emission of the LoRa radio as the carrier to deliver information. Experimental results show that our cross-technology communication approach provides reliable communication from LoRa to ZigBee with the throughput of up to 576.80 bps and the bit error rate of up to 5.23% in the 2.4 GHz band.


2022 ◽  
pp. 1477-1507
Author(s):  
Gargi Bhattacharjee ◽  
Sudip Kumar Das

Accidents and near-miss accidents in chemical industries are widespread. Most of the incidents occurred due to combinations of organizational and human factors. To identify the causes for an incident of an accident analysis is needed, because it reveals the possible causes behind the accidents. Accident analysis shows the human and organizational factors that support learning from the events. Literature review shows that human error plays an important role of accidents in process industries. The chapter discusses some case studies which are received very little media publicity and also no proper assessment. At first reports on the incidents were collected from newspapers and then the place was visited to conduct an interview with local people and present and past workers with the help of the PESO (M/S Petroleum and Explosive Safety Organization, Eastern Region, Govt. of India).


2022 ◽  
Vol 354 ◽  
pp. 00009
Author(s):  
Vlad Mihai Pasculescu ◽  
Emilian Ghicioi ◽  
Ligia Ioana Tuhut ◽  
Adrian Bogdan Simon-Marinica ◽  
Dragos Pasculescu

One of the most important tools for improving the OHS level in process industries is represented by risk analysis and assessment. Within industrial units in operation or in the ones which find themselves in the design phase, risk assessment is carried out for determining the hazards which may occur and which may lead to unwanted events, such as hazardous toxic releases, fires and explosions. Accidental releases of toxic/flammable/explosive substances may have serious consequences on workers or on the neighbouring population, therefore the need to establish safety areas based on best practices in the field and on scientific grounds is fully justified. Pressure tanks containing hazardous materials represent one of the most relevant industrial facilities within process plants, being most of the time exposed to hazardous toxic releases, fire and explosion risks. The current study aims to evaluate the consequences and discuss the safety distances required in case of an accidental release of a hazardous material from a tank located within a process plant, using process analysis software tools. Accident scenarios are modelled for comparison purposes with consequence modelling software widely used in safety engineering.


2022 ◽  
Vol 354 ◽  
pp. 00041
Author(s):  
Adrian Marius Jurca ◽  
Mihaela Părăian ◽  
Niculina Vătavu

Combustible dusts which are present in workplaces are a significant hazard which cannot be ignored by the plant owners, managers and workers. Combustible dust deflagrations and explosions have caused large numbers of deaths and catastrophic property damages in various industries, ranging from pharmaceutical plants to sugar factories. One may say that dust explosions in process industries always start inside process equipment such as mills, dryers, filters. Such events may occur in any process in which a combustible dust is handled, produced or stored, and can be triggered by any energy source, including static electricity, friction and hot surfaces. For any combustible dust type, several important parameters have to be taken into account when designing and using protective systems: i.e. the ease with which dust clouds ignite and their burning rates, maximum explosion pressure, maximum rate of explosion pressure rise. These parameters vary considerably depending on the dust type, their knowledge being a first step for carrying out a proper explosion risk assessment in installations which circulate combustible dusts. The paper presents the main aspects concerning explosion protection which have to be taken into account when designing protective systems intended to be used in explosive atmospheres generated by combustible dusts and the importance of selecting the proper explosion protection technique.


Author(s):  
Emmanuel Victor ◽  
Umenweke Great C ◽  
Ngozichukwu B

Reducing the concentration of CO2 from the atmosphere has attracted a lot of attention given the rapid level of industrialization in the world. Process Industries are one of the major contributors to this pollution in terms of the incessant release of CO2 from flue gas streams. In recent times metal oxides have received a lot of attention as potential adsorbents for solving this problem.They find application in post-, pre-, and oxy-combustion conditions. Their basic sites plus a lower charge to radius ratio increase their ionic nature and site basicity and facilitate the capture of this pernicious gas from flue gas streams by reacting to form carbonates, which when heated liberates an almost pure stream of CO2 which can be sequestered, thereby, aiding the release of environmentally benign flue gas streams to the atmosphere. This work takes a concise review of these metal oxides that have been widely studied.


2021 ◽  
Vol 13 (24) ◽  
pp. 13906
Author(s):  
Francisco Mendez Alva ◽  
Rob De Boever ◽  
Greet Van Eetvelde

Since the Green Deal, ambitious climate and resource neutrality goals have been set in Europe. Here, process industries hold a unique position due to their energy and material transformation capabilities. They are encouraged to develop cross-sectorial hubs for achieving not only climate ambition, but also joining a circular economy through urban–industrial symbiosis with both business and community stakeholders. This research proposes a data-based approach to identify potential hub locations by means of cluster analysis. A total of three different algorithms are compared on a set of location and pollution data of European industrial facilities: K-means, hierarchical agglomerative and density-based spatial clustering. The DBSCAN algorithm gave the best indication of potential locations for hubs because of its capacity to tune the main parameters. It evidenced that predominately west European countries have a high potential for identifying hubs for circularity (H4Cs) due to their industrial density. In Eastern Europe, the industrial landscape is more scattered, suggesting that additional incentives might be needed to develop H4Cs. Furthermore, industrial activities such as the production of aluminium, cement, lime, plaster, or electricity are observed to have a relatively lower tendency to cluster compared with the petrochemical sector. Finally, further lines of research to identify and develop industrial H4Cs are suggested.


Sign in / Sign up

Export Citation Format

Share Document