scholarly journals Research on emitter individual identification technology based on Automatic Dependent Surveillance–Broadcast signal

2021 ◽  
Vol 17 (2) ◽  
pp. 155014772199262
Author(s):  
Shiwen Chen ◽  
Junjian Yuan ◽  
Xiaopeng Xing ◽  
Xin Qin

Aiming at the shortcomings of the research on individual identification technology of emitters, which is primarily based on theoretical simulation and lack of verification equipment to conduct external field measurements, an emitter individual identification system based on Automatic Dependent Surveillance–Broadcast is designed. On one hand, the system completes the individual feature extraction of the signal preamble. On the other hand, it realizes decoding of the transmitter’s individual identity information and generates an individual recognition training data set, on which we can train the recognition network to achieve individual signal recognition. For the collected signals, six parameters were extracted as individual features. To reduce the feature dimensions, a Bessel curve fitting method is used for four of the features. The spatial distribution of the Bezier curve control points after fitting is taken as an individual feature. The processed features are classified with multiple classifiers, and the classification results are fused using the improved Dempster–Shafer evidence theory. Field measurements show that the average individual recognition accuracy of the system reaches 88.3%, which essentially meets the requirements.

2016 ◽  
Author(s):  
Nayna Vyas-Patel ◽  
John D Mumford

AbstractA number of image recognition systems have been specifically formulated for the individual recognition of large animals. These programs are versatile and can easily be adapted for the identification of smaller individuals such as insects. The Interactive Individual Identification System, I3S Classic, initially produced for the identification of individual whale sharks was employed to distinguish between different species of mosquitoes and bees, utilising the distinctive vein pattern present on insect wings. I3S Classic proved to be highly effective and accurate in identifying different species and sexes of mosquitoes and bees, with 80% to100% accuracy for the majority of the species tested. The sibling species Apis mellifera and Apis mellifera carnica were both identified with100% accuracy. Bombus terrestris terrestris and Bombus terrestris audax; were also identified and separated with high degrees of accuracy (90% to 100% respectively for the fore wings and 100% for the hind wings). When both Anopheles gambiae sensu stricto and Anopheles arabiensis were present in the database, they were identified with 94% and 100% accuracy respectively, allowing for a morphological and non-molecular method of sorting between these members of the sibling complex. Flat, not folded and entire, rather than broken, wing specimens were required for accurate identification. Only one wing image of each sex was required in the database to retrieve high levels of accurate results in the majority of species tested. The study describes how I3S was used to identify different insect species and draws comparisons with the use of the CO1 algorithm. As with CO1, I3S Classic proved to be suitable software which could reliably be used to aid the accurate identification of insect species. It is emphasised that image recognition for insect species should always be used in conjunction with other identifying characters in addition to the wings, as is the norm when identifying species using traditional taxonomic keys.


2013 ◽  
Vol 34 (4) ◽  
pp. 590-596 ◽  
Author(s):  
Ricardo Rocha ◽  
Tiago Carrilho ◽  
Rui Rebelo

Gekkonid field studies are hampered by the difficulty to individually recognize individuals. In this study we assess the feasibility of using their variegated iris pattern to photo-identify Tarentola boettgeri bischoffi, a threatened Macaronesian endemic. Using a library of 924 photos taken over a 9-month period we also evaluate the use of the pattern matching software Interactive Individual Identification System (I3S) to match photos of known specimens. Individuals were clearly recognized by their iris pattern with no misidentifications, and using I3S lead to a correct identification of 95% of the recaptures in a shorter time than the same process when conducted visually by an observer. The method’s feasibility was improved by increasing the number of images of each animal in the library and hindered by photos that deviate from a horizontal angle.


Author(s):  
Chao Feng ◽  
Jie Xiong ◽  
Liqiong Chang ◽  
Fuwei Wang ◽  
Ju Wang ◽  
...  

Person identification plays a critical role in a large range of applications. Recently, RF based person identification becomes a hot research topic due to the contact-free nature of RF sensing that is particularly appealing in current COVID-19 pandemic. However, existing systems still have multiple limitations: i) heavily rely on the gait patterns of users for identification; ii) require a large amount of data to train the model and also extensive retraining for new users and iii) require a large frequency bandwidth which is not available on most commodity RF devices for static person identification. This paper proposes RF-Identity, an RFID-based identification system to address the above limitations and the contribution is threefold. First, by integrating walking pattern features with unique body shape features (e.g., height), RF-Identity achieves a high accuracy in person identification. Second, RF-Identity develops a data augmentation scheme to expand the size of the training data set, thus reducing the human effort in data collection. Third, RF-Identity utilizes the tag diversity in spatial domain to identify static users without a need of large frequency bandwidth. Extensive experiments show an identification accuracy of 94.2% and 95.9% for 50 dynamic and static users, respectively.


2019 ◽  
Vol 15 (1) ◽  
pp. 155014771882052 ◽  
Author(s):  
Bowen Qin ◽  
Fuyuan Xiao

Due to its efficiency to handle uncertain information, Dempster–Shafer evidence theory has become the most important tool in many information fusion systems. However, how to determine basic probability assignment, which is the first step in evidence theory, is still an open issue. In this article, a new method integrating interval number theory and k-means++ cluster method is proposed to determine basic probability assignment. At first, k-means++ clustering method is used to calculate lower and upper bound values of interval number with training data. Then, the differentiation degree based on distance and similarity of interval number between the test sample and constructed models are defined to generate basic probability assignment. Finally, Dempster’s combination rule is used to combine multiple basic probability assignments to get the final basic probability assignment. The experiments on Iris data set that is widely used in classification problem illustrated that the proposed method is effective in determining basic probability assignment and classification problem, and the proposed method shows more accurate results in which the classification accuracy reaches 96.7%.


1997 ◽  
Vol 9 (1) ◽  
pp. 41-45
Author(s):  
Satoshi Tanigawa ◽  
◽  
Masafumi Uchida ◽  
Hideto Ide

Individual identification is required in various fields such as credit business, security business, information industry and crime investigation. This paper describes the individual identification system using images of eyes. With this system having used images data of 20 registered persons and 20 unregistered persons, we could obtain a high recogniniton rate and showing how efficient this system is.


2021 ◽  
Author(s):  
JASON Holmberg ◽  
Shane Gero ◽  
Andrew Blount ◽  
Jason Parham ◽  
jacob Levenson

Photo-identification of individual sperm whales (Physeter macrocephalus) is the primary technique for mark-recapture-based population analyses for the species The visual appearance of the fluke - with its distinct nicks and notches - often serves as the primary visual differentiator, allowing humans to make recorded sightings of specific individuals. However, the advent of digital photography and the significant increase in volume of images from multiple projects in combination with pre-existing historical catalogs has made applying the method more challenging.with the required human labor for de-duplication (reduction of Type II errors) and reconciliation of sightings between large datasets too cost- and time- prohibitive. To address this, we trained and evaluated the accuracy of PIE v2 (a triplet loss network) along with two existing fluke trailing edge-matching algorithms, CurvRank v2 and Dynamic Time Warping (DTW), as a mean to speed comparison among a high volume of photographs. Analyzed data were collected from a curated catalog of well-known sperm whales sighted across years (2005-2018) off the island of Dominica. The newly-trained PIE model outperformed the older CurvRank and DTW algorithms, and PIE provided the following top-k individual ID matching accuracy on a standard min-3/max-10 sighting training data set: Rank-1: 87.0%, Rank-5: 90.5%, and Rank-12: 92.5%. An essential aspect of PIE is that it can learn new individuals without network retraining, which can be immediately applied in the presence of (and for the resolution of) duplicate individuals in overlapping catalogs. Overall, our results recommend the use of PIE v2 and CurvRank v2 for ID reconciliation in combination due to their complementary performance.


2019 ◽  
Author(s):  
André C. Ferreira ◽  
Liliana R. Silva ◽  
Francesco Renna ◽  
Hanja B. Brandl ◽  
Julien P. Renoult ◽  
...  

ABSTRACTIndividual identification is a crucial step to answer many questions in evolutionary biology and is mostly performed by marking animals with tags. Such methods are well established but often make data collection and analyses time consuming and consequently are not suited for collecting very large datasets.Recent technological and analytical advances, such as deep learning, can help overcome these limitations by automatizing data collection and analysis. Currently one of the bottlenecks preventing the application of deep learning for individual identification is the need of hundreds to thousands of labelled pictures required for training convolutional neural networks (CNNs).Here, we describe procedures that improve data collection and allow individual identification in captive and wild birds and we apply it to three small bird species, the sociable weaver Philetairus socius, the great tit Parus major and the zebra finch Taeniopygia guttata.First, we present an automated method that allows the collection of large samples of individually labelled images. Second, we describe how to train a CNN to identify individuals. Third, we illustrate the general applicability of CNN for individual identification in animal studies by showing that the trained CNN can predict the identity of birds from images collected in contexts that differ from the ones originally used to train the CNNs. Fourth, we present a potential solution to solve the issues of new incoming individuals.Overall our work demonstrates the feasibility of applying state-of-the-art deep learning tools for individual identification of birds, both in the lab and in the wild. These techniques are made possible by our approaches that allow efficient collection of training data. The ability to conduct individual identification of birds without requiring external markers that can be visually identified by human observers represents a major advance over current methods.


Author(s):  
Samir N. Shoukry ◽  
D.R. Martinelli

Ultrasonic testing of concrete structures using the pitch-catch method is an effective technique for testing concrete structures that cannot be accessed on two opposing surfaces. However, the ultrasonic signals so measured are extremely noisy and contain a complicated pattern of multiple frequency-coupled reflections that makes interpretation a difficult task. In this investigation, a neural network modeling approach is used to classify ultrasonically tested concrete specimens into one of two classes: defective or nondefective. Different types of neural nets are used, and their performance is evaluated. It was found that correct classification of the individual ultrasonic signals could be achieved with an accuracy of 75 percent for the test set and 95 percent for the training set. These recognition rates lead to the correct classification of all the individual test specimens. The study shows that although some neural net architectures may show high performance using a particular training data set, their results might not be consistent. In this paper, the consistency of the network performance was tested by shuffling the training and testing data sets.


2011 ◽  
Vol 1 (1) ◽  
pp. 8-12 ◽  
Author(s):  
D. Pylarinos ◽  
K. Siderakis ◽  
E. Pyrgioti ◽  
E. Thalassinakis ◽  
I. Vitellas

Leakage current monitoring is widely employed to investigate the performance of high voltage insulators and the development of surface activity. Field measurements offer an exact view of experienced activity and insulators’ performance, which are strongly correlated to local conditions. The required long term monitoring however, results to the accumulation of vast amounts of data. Therefore, an identification system for the classification of field leakage current waveforms rises as a necessity. In this paper, a number of 500 leakage current waveforms recorded on a composite post insulator installed at a 150 kV High Voltage Substation suffering from intense marine pollution, are investigated. The insulator was monitored for a period of 13 months. An identification system is designed based on the considered data employing Fourier analysis, wavelet multiresolution analysis and a neural network. Results show the large impact of noise in field measurements and the effectiveness of the discussed system on the considered data set.


2019 ◽  
Vol 68 (6) ◽  
pp. 876-895 ◽  
Author(s):  
Miroslav Valan ◽  
Karoly Makonyi ◽  
Atsuto Maki ◽  
Dominik Vondráček ◽  
Fredrik Ronquist

Abstract Rapid and reliable identification of insects is important in many contexts, from the detection of disease vectors and invasive species to the sorting of material from biodiversity inventories. Because of the shortage of adequate expertise, there has long been an interest in developing automated systems for this task. Previous attempts have been based on laborious and complex handcrafted extraction of image features, but in recent years it has been shown that sophisticated convolutional neural networks (CNNs) can learn to extract relevant features automatically, without human intervention. Unfortunately, reaching expert-level accuracy in CNN identifications requires substantial computational power and huge training data sets, which are often not available for taxonomic tasks. This can be addressed using feature transfer: a CNN that has been pretrained on a generic image classification task is exposed to the taxonomic images of interest, and information about its perception of those images is used in training a simpler, dedicated identification system. Here, we develop an effective method of CNN feature transfer, which achieves expert-level accuracy in taxonomic identification of insects with training sets of 100 images or less per category, depending on the nature of data set. Specifically, we extract rich representations of intermediate to high-level image features from the CNN architecture VGG16 pretrained on the ImageNet data set. This information is submitted to a linear support vector machine classifier, which is trained on the target problem. We tested the performance of our approach on two types of challenging taxonomic tasks: 1) identifying insects to higher groups when they are likely to belong to subgroups that have not been seen previously and 2) identifying visually similar species that are difficult to separate even for experts. For the first task, our approach reached $CDATA[$CDATA[$>$$92% accuracy on one data set (884 face images of 11 families of Diptera, all specimens representing unique species), and $CDATA[$CDATA[$>$$96% accuracy on another (2936 dorsal habitus images of 14 families of Coleoptera, over 90% of specimens belonging to unique species). For the second task, our approach outperformed a leading taxonomic expert on one data set (339 images of three species of the Coleoptera genus Oxythyrea; 97% accuracy), and both humans and traditional automated identification systems on another data set (3845 images of nine species of Plecoptera larvae; 98.6 % accuracy). Reanalyzing several biological image identification tasks studied in the recent literature, we show that our approach is broadly applicable and provides significant improvements over previous methods, whether based on dedicated CNNs, CNN feature transfer, or more traditional techniques. Thus, our method, which is easy to apply, can be highly successful in developing automated taxonomic identification systems even when training data sets are small and computational budgets limited. We conclude by briefly discussing some promising CNN-based research directions in morphological systematics opened up by the success of these techniques in providing accurate diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document