scholarly journals Design and implementation of an unmanned aerial vehicle with self-propulsive wing

2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985729 ◽  
Author(s):  
Abdelrahman Kasem ◽  
Ahmad Gamal ◽  
Amr Hany ◽  
Hesham Gaballa ◽  
Karim Ahmed ◽  
...  

The article aims to prove the effectiveness of the proposed unmanned air vehicle design (The Propulsive Wing) through numerical and experimental means. The propulsive wing unmanned air vehicle is a completely new class of unmanned air vehicle, making disruptive changes in the aircraft industry. It is based on a distributed cross-flow electric fan propulsion system. When the fan starts to operate, the flow is drawn from the suction surface, provided by energy through the fan and expelled out of the airfoil trailing edge (TE). This causes a significant lift increase and drag reduction with respect to ordinary aircrafts, making it perfect for applications requiring low cruise speed such as firefighting, agriculture, and aerial photography. In this early stage of the investigation, our main aim is to prove that this design is applicable and the expected aerodynamic and propulsion improvements are achievable. This is done through a two-dimensional computational fluid dynamics investigation of the flow around an airfoil with an embedded cross-flow fan near its TE. A scaled wind tunnel model of the same geometry used in the computational fluid dynamics investigation was manufactured and used to perform wind tunnel testing. The computational fluid dynamics and wind tunnel results are compared for validation. Furthermore, an unmanned air vehicle model was designed and manufactured to prove that the propulsive wing concept is flyable. The article shows that the aerodynamic forces developed on the cross-flow fan airfoil are not only functions of Reynolds number and angle of attack as for standard airfoils but also function of the fan rotational speed. The results show the great effect of the rotational speed of fan on lift augmentation and thrust generation through the high momentum flow getting out of the fan nozzle. Wind tunnel tests show that the suction effect of the fan provides stall free operation up to very high angles of attack (40 degrees) leading to unprecedented values of lift coefficient up to 5.8. The flight test conducted showed the great potential of the new aircraft to perform the expected low cruise speed and high angles of attack flight.

Author(s):  
Christoph Reichel ◽  
Klaus Strohmeier

In many technical fields, e.g. heat exchangers, circular cylinders are involved in Fluid Structure Interaction (FSI) problems. Therefore correct frequency and magnitude of fluid forces, respectively Strouhal number, drag and lift coefficient are needed. If fluid forces are evaluated with Computational Fluid Dynamics (CFD), mostly flow around a rigid cylinder is used to verify model and numerical methods. Unfortunately experimental as well as numerical results show great variation, making verification and testing of models difficult. Reynolds number is regarded as main influencing parameter for a rigid cylinder in cross flow. Most of experimental deviations can be related to other parameters, which differ from experiment to experiment. In this paper such parameters are specified and it is shown, that a closer look is needed, if one really wants to verify a model. Besides experimental results, which can be found in literature, some parameters are investigated by numerical simulation. Like experiments CFD (Computational Fluid Dynamics) simulations show a huge bandwidth of results, even when the same turbulence model is used. Flow around cylinders separates over a wide range of Reynolds numbers. It will be demonstrated that, using CFD, large deviations in fluid forces can often be related to miscalculation of the point of separation.


2005 ◽  
Vol 33 (3) ◽  
pp. 195-207 ◽  
Author(s):  
Z. Husain ◽  
M. Z. Abdullah ◽  
T. C. Yap

The two-dimensional analysis, using computational fluid dynamics (CFD), of tandem/staggered arranged airfoils of the canard and wing of an Eagle 150 aircraft and also the aerodynamic tests conducted in an open-circuit wind tunnel are presented in the paper. The wind tunnel tests were carried out at a speed of 38m/s in a test section of size 300 mm (width), 300 mm (height) and 600 mm (length), at Reynolds number 2.25 × 105. The tests were carried out with tandem and staggered placement of the airfoils in order to determine the optimum position of the wing with respect to the canard and also to determine the lift coefficient at various angles of attack. The CFD code FLUENT 5 was used to investigate the aerodynamic performance of a two-dimensional model to validate the wind tunnel results. The flow interaction was studied in the tandem and staggered arrangements in the wind tunnel as well as by the computational method. The k-ε turbulence model gave exceptionally good results.


Author(s):  
Wojciech Grendysa ◽  
Bartosz Olszański

This paper presents the optimization of multi-element aerofoil for the LAR-3 Puffin -- STOL light transport aircraft concept proposal. Based on the geometry and aerodynamic characteristics of the well-known and proven in flight three-segment NACA 63A416 aerofoil, the authors explore the possibility of enhancing its high-lift performance by the movement of slot and flap position in extended (deployed) aerodynamic configuration. In order to determine the optimum positions of aerofoil segments (elements), a multi-step optimization approach was developed. It combines computational fluid dynamics simulations that were used for design space screening and preliminary optimization together with low-turbulence wind tunnel tests which yielded certain results. To decrease the numerical cost of the computer simulation campaign, Design of experiment methods (optimal space-filling design among others) were employed instead of exhausting full factorial (parametric) design. Response surface models of major aerodynamic coefficients (lift, drag, pitching moment) at predicted maximum lift coefficient ( C L max) point allowed to narrow down search space and identify several candidates for optimal configuration to be checked experimentally. Wind tunnel tests campaign confirmed the major trends observed in computational fluid dynamics derived response surface contour plots. For the optimum aerodynamic configuration, chosen experimental C L max is over 3.9, which is a 10% increase over the baseline (initial slat and flap positions) case. In parallel, the maximum lift-to-drag ratio gain at that point was almost 19%. The research outlined in this paper was conducted on behalf of the aircraft production company and its results will be applied in a newly designed transport aircraft.


Author(s):  
Stuart A. Cain ◽  
Lewis A. Maroti ◽  
Fangbiao Lin

Accurate prediction of the fluid dynamic and thermodynamic characteristics of saturated buoyant plumes at power plant chimneys is important in developing reliable methods for controlling stack plume downwash. In particular, the accurate prediction and abatement of stack plume downwash is critical in northern climates where, under downwash conditions, the interaction of the saturated, warm plume with the cold outer chimney surface can lead to hazardous ice formation and buildup near the top of the chimney. When a stack is in downwash mode the plume leaving the stack turns downward and flows down along the leeward side of the shell. This is a direct consequence of the wind dynamic pressure acting on the plume and the low pressure in the wake of the shell. In downwash model it is not uncommon to see the plume travel down the shell one third to one half the chimney height and extend radially away from the shell a distance of twenty to thirty feet. This complex interaction of a turbulent thermally buoyant jet entering a cross wind has been studied extensively in the past both experimentally and theoretically with emphasis on the introduction of the jet through an orifice in an infinitely long flat plate. In the case of stack plume downwash the drag of the cylindrical stack in cross flow interacts with the plume under certain “worst-case” ambient wind conditions for the geographic location of the plant and draws the swirling plume into the wake region behind the stack. Once in this region, the distance the plume will travel down the leeward side of the chimney is a function of the ambient wind velocity and the plume velocity. Prediction of this complex, turbulent, three dimensional swirling flow including mixing of different temperature gases and the development of remedial devices to control, in particular, the problem of plume downwash has traditionally required an extensive and expensive wind tunnel model study. Results of these wind tunnel tests include empirical correlations and charts which have been used in the industry for decades. Advances in the capabilities of Computational Fluid Dynamics (CFD) have allowed engineers the ability to reliably study this flow phenomena in greater detail than attainable in a typical wind tunnel model study. In this paper Computational Fluid Dynamics (CFD) is used to predict downwash as a function of flue gas discharge velocity, wind velocity and temperature and the geometry of the stack near the discharge elevation. Further, two devices for minimizing plume downwash in a prototype stack installation are discussed and evaluated by the authors using CFD. Model validation simulations against experimental data and theoretical predictions of buoyant jets in cross flow are also presented and discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1642
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Jennifer Keenahan

Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.


2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


2016 ◽  
Vol 820 ◽  
pp. 359-364
Author(s):  
Marek Magát ◽  
Ivana Olekšáková ◽  
Juraj Žilinský

In this article are described the results from testing profile of atmospheric boundary layer in BLWT (Boundary layer wind tunnel) in Florence (Prato), Italy with emphasis on comparison of the results with simulations in CFD (Computational fluid dynamics) software OpenFoam. The values are compared with calculated values from EuroCode.


2013 ◽  
Vol 68 (12) ◽  
pp. 2534-2544 ◽  
Author(s):  
N. Ratkovich ◽  
T. R. Bentzen

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge–air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.


Sign in / Sign up

Export Citation Format

Share Document