Background:
Biocompatible polymers are gaining great interest in the field of biomedical applications.
The term biocompatibility refers to the suitability of a polymer to body and body fluids exposure. Biocompatible
polymers are both synthetic (man-made) and natural and aid in the close vicinity of a living system or work in
intimacy with living cells. These are used to gauge, treat, boost, or substitute any tissue, organ or function of the
body. A biocompatible polymer improves body functions without altering its normal functioning and triggering
allergies or other side effects. It encompasses advances in tissue culture, tissue scaffolds, implantation, artificial
grafts, wound fabrication, controlled drug delivery, bone filler material, etc.
Objectives:
This review provides an insight into the remarkable contribution made by some well-known biopolymers
such as polylactic-co-glycolic acid, poly(ε-caprolactone) (PCL), polyLactic Acid, poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Chitosan and Cellulose in the therapeutic measure for many
biomedical applications.
Methods: :
Various techniques and methods have made biopolymers more significant in the biomedical fields such
as augmentation (replaced petroleum based polymers), film processing, injection modeling, blow molding techniques,
controlled / implantable drug delivery devices, biological grafting, nano technology, tissue engineering
etc.
Results:
The fore mentioned techniques and other advanced techniques have resulted in improved biocompatibility,
nontoxicity, renewability, mild processing conditions, health condition, reduced immunological reactions and
minimized side effects that would occur if synthetic polymers are used in a host cell.
Conclusion:
Biopolymers have brought effective and attainable targets in pharmaceutics and therapeutics. There
are huge numbers of biopolymers reported in the literature that has been used effectively and extensively.