scholarly journals Reviewing the relationship between machines and radiology: the application of artificial intelligence

2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.

Author(s):  
Joel Weijia Lai ◽  
Candice Ke En Ang ◽  
U. Rajendra Acharya ◽  
Kang Hao Cheong

Artificial Intelligence in healthcare employs machine learning algorithms to emulate human cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence taps on the ability of computer algorithms and software with allowable thresholds to make deterministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial intelligence enhances the process of data analysis without the need for human input, producing nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that affects millions worldwide, with impairment in thinking and behaviour that may be significantly disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been utilized to analyze the different components of schizophrenia, such as in prediction of disease, and assessment of current prevention methods. These are carried out in hope of assisting with diagnosis and provision of viable options for individuals affected. In this paper, we review the progress of the use of artificial intelligence in schizophrenia.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7784
Author(s):  
Johan Wasselius ◽  
Eric Lyckegård Finn ◽  
Emma Persson ◽  
Petter Ericson ◽  
Christina Brogårdh ◽  
...  

Recent advances in stroke treatment have provided effective tools to successfully treat ischemic stroke, but still a majority of patients are not treated due to late arrival to hospital. With modern stroke treatment, earlier arrival would greatly improve the overall treatment results. This prospective study was performed to asses the capability of bilateral accelerometers worn in bracelets 24/7 to detect unilateral arm paralysis, a hallmark symptom of stroke, early enough to receive treatment. Classical machine learning algorithms as well as state-of-the-art deep neural networks were evaluated on detection times between 15 min and 120 min. Motion data were collected using triaxial accelerometer bracelets worn on both arms for 24 h. Eighty-four stroke patients with unilateral arm motor impairment and 101 healthy subjects participated in the study. Accelerometer data were divided into data windows of different lengths and analyzed using multiple machine learning algorithms. The results show that all algorithms performed well in separating the two groups early enough to be clinically relevant, based on wrist-worn accelerometers. The two evaluated deep learning models, fully convolutional network and InceptionTime, performed better than the classical machine learning models with an AUC score between 0.947–0.957 on 15 min data windows and up to 0.993–0.994 on 120 min data windows. Window lengths longer than 90 min only marginally improved performance. The difference in performance between the deep learning models and the classical models was statistically significant according to a non-parametric Friedman test followed by a post-hoc Nemenyi test. Introduction of wearable stroke detection devices may dramatically increase the portion of stroke patients eligible for revascularization and shorten the time to treatment. Since the treatment effect is highly time-dependent, early stroke detection may dramatically improve stroke outcomes.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zeynep Hilal Kilimci ◽  
Aykut Güven ◽  
Mitat Uysal ◽  
Selim Akyokus

Nowadays, smart devices as a part of daily life collect data about their users with the help of sensors placed on them. Sensor data are usually physical data but mobile applications collect more than physical data like device usage habits and personal interests. Collected data are usually classified as personal, but they contain valuable information about their users when it is analyzed and interpreted. One of the main purposes of personal data analysis is to make predictions about users. Collected data can be divided into two major categories: physical and behavioral data. Behavioral data are also named as neurophysical data. Physical and neurophysical parameters are collected as a part of this study. Physical data contains measurements of the users like heartbeats, sleep quality, energy, movement/mobility parameters. Neurophysical data contain keystroke patterns like typing speed and typing errors. Users’ emotional/mood statuses are also investigated by asking daily questions. Six questions are asked to the users daily in order to determine the mood of them. These questions are emotion-attached questions, and depending on the answers, users’ emotional states are graded. Our aim is to show that there is a connection between users’ physical/neurophysical parameters and mood/emotional conditions. To prove our hypothesis, we collect and measure physical and neurophysical parameters of 15 users for 1 year. The novelty of this work to the literature is the usage of both combinations of physical and neurophysical parameters. Another novelty is that the emotion classification task is performed by both conventional machine learning algorithms and deep learning models. For this purpose, Feedforward Neural Network (FFNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) neural network are employed as deep learning methodologies. Multinomial Naïve Bayes (MNB), Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), and Decision Integration Strategy (DIS) are evaluated as conventional machine learning algorithms. To the best of our knowledge, this is the very first attempt to analyze the neurophysical conditions of the users by evaluating deep learning models for mood analysis and enriching physical characteristics with neurophysical parameters. Experiment results demonstrate that the utilization of deep learning methodologies and the combination of both physical and neurophysical parameters enhances the classification success of the system to interpret the mood of the users. A wide range of comparative and extensive experiments shows that the proposed model exhibits noteworthy results compared to the state-of-art studies.


Author(s):  
M. A. Fesenko ◽  
G. V. Golovaneva ◽  
A. V. Miskevich

The new model «Prognosis of men’ reproductive function disorders» was developed. The machine learning algorithms (artificial intelligence) was used for this purpose, the model has high prognosis accuracy. The aim of the model applying is prioritize diagnostic and preventive measures to minimize reproductive system diseases complications and preserve workers’ health and efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


2020 ◽  
Vol 237 (12) ◽  
pp. 1430-1437
Author(s):  
Achim Langenbucher ◽  
Nóra Szentmáry ◽  
Jascha Wendelstein ◽  
Peter Hoffmann

Abstract Background and Purpose In the last decade, artificial intelligence and machine learning algorithms have been more and more established for the screening and detection of diseases and pathologies, as well as for describing interactions between measures where classical methods are too complex or fail. The purpose of this paper is to model the measured postoperative position of an intraocular lens implant after cataract surgery, based on preoperatively assessed biometric effect sizes using techniques of machine learning. Patients and Methods In this study, we enrolled 249 eyes of patients who underwent elective cataract surgery at Augenklinik Castrop-Rauxel. Eyes were measured preoperatively with the IOLMaster 700 (Carl Zeiss Meditec), as well as preoperatively and postoperatively with the Casia 2 OCT (Tomey). Based on preoperative effect sizes axial length, corneal thickness, internal anterior chamber depth, thickness of the crystalline lens, mean corneal radius and corneal diameter a selection of 17 machine learning algorithms were tested for prediction performance for calculation of internal anterior chamber depth (AQD_post) and axial position of equatorial plane of the lens in the pseudophakic eye (LEQ_post). Results The 17 machine learning algorithms (out of 4 families) varied in root mean squared/mean absolute prediction error between 0.187/0.139 mm and 0.255/0.204 mm (AQD_post) and 0.183/0.135 mm and 0.253/0.206 mm (LEQ_post), using 5-fold cross validation techniques. The Gaussian Process Regression Model using an exponential kernel showed the best performance in terms of root mean squared error for prediction of AQDpost and LEQpost. If the entire dataset is used (without splitting for training and validation data), comparison of a simple multivariate linear regression model vs. the algorithm with the best performance showed a root mean squared prediction error for AQD_post/LEQ_post with 0.188/0.187 mm vs. the best performance Gaussian Process Regression Model with 0.166/0.159 mm. Conclusion In this paper we wanted to show the principles of supervised machine learning applied to prediction of the measured physical postoperative axial position of the intraocular lenses. Based on our limited data pool and the algorithms used in our setting, the benefit of machine learning algorithms seems to be limited compared to a standard multivariate regression model.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kinshuk Sengupta ◽  
Praveen Ranjan Srivastava

Abstract Background In medical diagnosis and clinical practice, diagnosing a disease early is crucial for accurate treatment, lessening the stress on the healthcare system. In medical imaging research, image processing techniques tend to be vital in analyzing and resolving diseases with a high degree of accuracy. This paper establishes a new image classification and segmentation method through simulation techniques, conducted over images of COVID-19 patients in India, introducing the use of Quantum Machine Learning (QML) in medical practice. Methods This study establishes a prototype model for classifying COVID-19, comparing it with non-COVID pneumonia signals in Computed tomography (CT) images. The simulation work evaluates the usage of quantum machine learning algorithms, while assessing the efficacy for deep learning models for image classification problems, and thereby establishes performance quality that is required for improved prediction rate when dealing with complex clinical image data exhibiting high biases. Results The study considers a novel algorithmic implementation leveraging quantum neural network (QNN). The proposed model outperformed the conventional deep learning models for specific classification task. The performance was evident because of the efficiency of quantum simulation and faster convergence property solving for an optimization problem for network training particularly for large-scale biased image classification task. The model run-time observed on quantum optimized hardware was 52 min, while on K80 GPU hardware it was 1 h 30 min for similar sample size. The simulation shows that QNN outperforms DNN, CNN, 2D CNN by more than 2.92% in gain in accuracy measure with an average recall of around 97.7%. Conclusion The results suggest that quantum neural networks outperform in COVID-19 traits’ classification task, comparing to deep learning w.r.t model efficacy and training time. However, a further study needs to be conducted to evaluate implementation scenarios by integrating the model within medical devices.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5953 ◽  
Author(s):  
Parastoo Alinia ◽  
Ali Samadani ◽  
Mladen Milosevic ◽  
Hassan Ghasemzadeh ◽  
Saman Parvaneh

Automated lying-posture tracking is important in preventing bed-related disorders, such as pressure injuries, sleep apnea, and lower-back pain. Prior research studied in-bed lying posture tracking using sensors of different modalities (e.g., accelerometer and pressure sensors). However, there remain significant gaps in research regarding how to design efficient in-bed lying posture tracking systems. These gaps can be articulated through several research questions, as follows. First, can we design a single-sensor, pervasive, and inexpensive system that can accurately detect lying postures? Second, what computational models are most effective in the accurate detection of lying postures? Finally, what physical configuration of the sensor system is most effective for lying posture tracking? To answer these important research questions, in this article we propose a comprehensive approach for designing a sensor system that uses a single accelerometer along with machine learning algorithms for in-bed lying posture classification. We design two categories of machine learning algorithms based on deep learning and traditional classification with handcrafted features to detect lying postures. We also investigate what wearing sites are the most effective in the accurate detection of lying postures. We extensively evaluate the performance of the proposed algorithms on nine different body locations and four human lying postures using two datasets. Our results show that a system with a single accelerometer can be used with either deep learning or traditional classifiers to accurately detect lying postures. The best models in our approach achieve an F1 score that ranges from 95.2% to 97.8% with a coefficient of variation from 0.03 to 0.05. The results also identify the thighs and chest as the most salient body sites for lying posture tracking. Our findings in this article suggest that, because accelerometers are ubiquitous and inexpensive sensors, they can be a viable source of information for pervasive monitoring of in-bed postures.


Sign in / Sign up

Export Citation Format

Share Document