quantum machine learning
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 146)

H-INDEX

14
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Tahereh Salehi ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Mina Abbaszade ◽  
Vahid Salari

Abstract Quantum computing is a new and advanced topic that refers to calculations based on the principles of quantum mechanics. Itmakes certain kinds of problems be solved easier compared to classical computers. This advantage of quantum computingcan be used to implement many existing problems in different fields incredibly effectively. One important field that quantumcomputing has shown great results in machine learning. Until now, many different quantum algorithms have been presented toperform different machine learning approaches. In some special cases, the execution time of these quantum algorithms will bereduced exponentially compared to the classical ones. But at the same time, with increasing data volume and computationtime, taking care of systems to prevent unwanted interactions with the environment can be a daunting task and since thesealgorithms work on machine learning problems, which usually includes big data, their implementation is very costly in terms ofquantum resources. Here, in this paper, we have proposed an approach to reduce the cost of quantum circuits and to optimizequantum machine learning circuits in particular. To reduce the number of resources used, in this paper an approach includingdifferent optimization algorithms is considered. Our approach is used to optimize quantum machine learning algorithms forbig data. In this case, the optimized circuits run quantum machine learning algorithms in less time than the original onesand by preserving the original functionality. Our approach improves the number of quantum gates by 10.7% and 14.9% indifferent circuits and the number of time steps is reduced by three and 15 units, respectively. This is the amount of reduction forone iteration of a given sub-circuit U in the main circuit. For cases where this sub-circuit is repeated more times in the maincircuit, the optimization rate is increased. Therefore, by applying the proposed method to circuits with big data, both cost andperformance are improved.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012023
Author(s):  
Mukta Nivelkar ◽  
S. G. Bhirud

Abstract Mechanism of quantum computing helps to propose several task of machine learning in quantum technology. Quantum computing is enriched with quantum mechanics such as superposition and entanglement for making new standard of computation which will be far different than classical computer. Qubit is sole of quantum technology and help to use quantum mechanism for several tasks. Tasks which are non-computable by classical machine can be solved by quantum technology and these tasks are classically hard to compute and categorised as complex computations. Machine learning on classical models is very well set but it has more computational requirements based on complex and high-volume data processing. Supervised machine learning modelling using quantum computing deals with feature selection, parameter encoding and parameterized circuit formation. This paper highlights on integration of quantum computation and machine learning which will make sense on quantum machine learning modeling. Modelling of quantum parameterized circuit, Quantum feature set design and implementation for sample data is discussed. Supervised machine learning using quantum mechanism such as superposition and entanglement are articulated. Quantum machine learning helps to enhance the various classical machine learning methods for better analysis and prediction using complex measurement.


2021 ◽  
Author(s):  
Stefano Olgiati ◽  
Nima Heidari ◽  
Davide Meloni ◽  
Federico Pirovano ◽  
Ali Noorani ◽  
...  

Background Quantum computing (QC) and quantum machine learning (QML) are promising experimental technologies which can improve precision medicine applications by reducing the computational complexity of algorithms driven by big, unstructured, real-world data. The clinical problem of knee osteoarthritis is that, although some novel therapies are safe and effective, the response is variable, and defining the characteristics of an individual who will respond remains a challenge. In this paper we tested a quantum neural network (QNN) application to support precision data-driven clinical decisions to select personalized treatments for advanced knee osteoarthritis. Methods Following patients consent and Research Ethics Committee approval, we collected clinico-demographic data before and after the treatment from 170 patients eligible for knee arthroplasty (Kellgren-Lawrence grade ≥ 3, OKS ≤ 27, Age ≥ 64 and idiopathic aetiology of arthritis) treated over a 2 year period with a single injection of microfragmented fat. Gender classes were balanced (76 M, 94 F) to mitigate gender bias. A patient with an improvement ≥ 7 OKS has been considered a Responder. We trained our QNN Classifier on a randomly selected training subset of 113 patients to classify responders from non-responders (73 R, 40 NR) in pain and function at 1 year. Outliers were hidden from the training dataset but not from the validation set. Results We tested our QNN Classifier on a randomly selected test subset of 57 patients (34 R, 23 NR) including outliers. The No Information Rate was equal to 0.59. Our application correctly classified 28 Responders out of 34 and 6 non-Responders out of 23 (Sensitivity = 0.82, Specificity = 0.26, F1 Statistic= 0.71). The Positive (LR+) and Negative (LR-) Likelihood Ratios were respectively 1.11 and 0.68. The Diagnostic Odds Ratio (DOR) was equal to 2. Conclusions Preliminary results on a small validation dataset show that quantum machine learning applied to data-driven clinical decisions for the personalized treatment of advanced knee osteoarthritis is a promising technology to reduce computational complexity and improve prognostic performance. Our results need further research validation with larger, real-world unstructured datasets, and clinical validation with an AI Clinical Trial to test model efficacy, safety, clinical significance and relevance at a public health level.


2021 ◽  
Author(s):  
Junde Li ◽  
Mahabubul Alam ◽  
Congzhou M Sha ◽  
Jian Wang ◽  
Nikolay V. Dokholyan ◽  
...  

2021 ◽  
Author(s):  
Napat Thumwanit ◽  
Chayaphol Lortaraprasert ◽  
Rudy Raymond

Author(s):  
Maiyuren Srikumar ◽  
Charles Daniel Hill ◽  
Lloyd Hollenberg

Abstract Quantum machine learning (QML) is a rapidly growing area of research at the intersection of classical machine learning and quantum information theory. One area of considerable interest is the use of QML to learn information contained within quantum states themselves. In this work, we propose a novel approach in which the extraction of information from quantum states is undertaken in a classical representational-space, obtained through the training of a hybrid quantum autoencoder (HQA). Hence, given a set of pure states, this variational QML algorithm learns to identify – and classically represent – their essential distinguishing characteristics, subsequently giving rise to a new paradigm for clustering and semi-supervised classification. The analysis and employment of the HQA model are presented in the context of amplitude encoded states – which in principle can be extended to arbitrary states for the analysis of structure in non-trivial quantum data sets.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Leonardo Alchieri ◽  
Davide Badalotti ◽  
Pietro Bonardi ◽  
Simone Bianco

Sign in / Sign up

Export Citation Format

Share Document