Ergodic site response model for subduction zone regions

2021 ◽  
pp. 875529302110569
Author(s):  
Grace A Parker ◽  
Jonathan P Stewart

We present an ergodic site response model with regional adjustments for use with subduction zone ground-motion models. The model predicts site amplification of peak ground acceleration, peak ground velocity, and 5% damped pseudo-spectral accelerations of the orientation-independent horizonal component for oscillator periods from 0.01 to 10 s. The model depends on the time-averaged shear-wave velocity in the upper 30 m ( VS30), basin depth, and region and is independent of subduction earthquake type. It has three components: a linear site-amplification term in the form of VS30-scaling, a nonlinear term that depends on VS30 and shaking intensity parameterized by peak ground acceleration at the reference-rock velocity condition of 760 m/s, and a basin sediment-depth term for Japan and Cascadia conditioned on the depth to the 2.5 km/s shear-wave velocity isosurface ( Z2.5). A global VS30-scaling model is provided along with regional adjustments for Japan, Taiwan, South America, Alaska, and Cascadia. The nonlinear model is global, with a functional form that has often been used to fit nonlinear responses inferred from simulations, but here we calibrate it empirically. Relative to a prior model for shallow earthquakes in active tectonic regions, our subduction zone global VS30-scaling is comparable at short periods (<1.0 s) but weaker at long periods, while the nonlinear site response is generally less pronounced but extends to lower levels of shaking. Basin depth models are conditioned on the difference of the actual Z2.5 and a VS30-conditioned mean Z2.5. Sites with positive differential depths have increased long-period site responses and decreased short-period responses, with the opposite occurring for negative differential depths.

2017 ◽  
Vol 17 (4B) ◽  
pp. 82-95
Author(s):  
Nguyen Anh Duong ◽  
Pham Dinh Nguyen ◽  
Vu Minh Tuan ◽  
Bui Van Duan ◽  
Nguyen Thuy Linh

In this study, we have carried out the probabilistic seismic hazard analysis in Hanoi based on the latest seismotectonic data. The seismic hazard map shows peak ground acceleration values on rock corresponding to the 10% probability of exceedance in a 50-year time period (approximately return periods of 500 years). The calculated results reveal that the maximum ground acceleration can occur on rock in Hanoi is about 0.13 g corresponding to the shaking intensity level of VIII on the MSK-64 scale. The ground motion values calculated on rock vary according to the local site conditions. We have evaluated and corrected the local site effects on ground motion in Ha Dong district, Hanoi by using microtremor and borehole data. The Nakamura’s H/V spectral ratio method has been applied to establish a map of ground dominant periods in Ha Dong with a TS range of 0.6 - 1.2 seconds. The relatively high values of periods indicate that Ha Dong has soft soil and thick Quaternary sediments. The sediment thickness in Ha Dong is calculated to vary between 30 - 75 m based on ground dominant periods and shear wave velocity VS30 = 171 - 254 m/s. The results of local site effect on ground motion show that the 500-year return period peak ground acceleration in Ha Dong ranges from 0.13 g to 0.17 g. It is once again asserted that the seismic hazard in Hanoi is a matter of great concern, due not only to the relatively high ground acceleration, but also to the seismic characteristics of soil (low shear wave velocity, ground dominant period of approximately 1 second).


2019 ◽  
Vol 36 (1) ◽  
pp. 111-137 ◽  
Author(s):  
Boqin Xu ◽  
Ellen M Rathje ◽  
Youssef Hashash ◽  
Jonathan Stewart ◽  
Kenneth Campbell ◽  
...  

Small-strain damping profiles developed from geotechnical laboratory testing have been observed to be smaller than the damping inferred from the observed site amplification from downhole array recordings. This study investigates the high-frequency spectral decay parameter ( κ0) of earthquake motions from soil sites and evaluates the use of κ0 to constrain the small-strain damping profile for one-dimensional site response analysis. Using data from 51 sites from the Kiban-Kyoshin strong motion network (KiK-net) array in Japan and six sites from California, a relationship was developed between κ0 at the surface and both the 30-m time-averaged shear wave velocity ( V s30) and the depth to the 2.5 km/s shear wave velocity horizon ( Z2.5). This relationship demonstrates that κ0 increases with decreasing V s30 and increasing Z2.5. An approach is developed that uses this relationship to establish a target κ0 from which to constrain the small-strain damping profile used in one-dimensional site response analysis. This approach to develop κ0-consistent damping profiles for site response analysis is demonstrated through a recent site amplification study of Central and Eastern North America for the NGA-East project.


2014 ◽  
Vol 580-583 ◽  
pp. 264-267
Author(s):  
Sheng Jie Di ◽  
Zhi Gang Shan ◽  
Xue Yong Xu

Characterization of the shear wave velocity of soils is an integral component of various seismic analysis, including site classification, hazard analysis, site response analysis, and soil-structure interaction. Shear wave velocity at offshore sites of the coastal regions can be measured by the suspension logging method according to the economic applicability. The study presents some methods for estimating the shear wave velocity profiles in the absence of site-specific shear wave velocity data. By applying generalized regression neural network (GRNN) for the estimation of in-situ shear wave velocity, it shows good performances. Therefore, this estimation method is worthy of being recommended in the later engineering practice.


2001 ◽  
Vol 17 (1) ◽  
pp. 65-87 ◽  
Author(s):  
Adrián Rodríguez-Marek ◽  
Jonathan D. Bray ◽  
Norman A. Abrahamson

A simplified empirically based seismic site response evaluation procedure that includes measures of the dynamic stiffness of the surficial materials and the depth to bedrock as primary parameters is introduced. This geotechnical site classification scheme provides an alternative to geologic-based and shear wave velocity-based site classification schemes. The proposed scheme is used to analyze the ground motion data from the 1989 Loma Prieta and 1994 Northridge earthquakes. Period-dependent and intensity-dependent spectral acceleration amplification factors for different site conditions are presented. The proposed scheme results in a significant reduction in standard error when compared with a simpler “rock vs. soil” classification system. Moreover, results show that sites previously grouped as “rock” should be subdivided as competent rock sites and weathered soft rock/shallow stiff soil sites to reduce uncertainty in defining site-dependent ground motions. Results also show that soil depth is an important parameter in estimating seismic site response. The standard errors resulting from the proposed site classification system are comparable with those obtained using the more elaborate code-based average shear-wave velocity classification system.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Dalia Munaff Naji ◽  
Muge K. Akin ◽  
Ali Firat Cabalar

Assessment of seismic site classification (SSC) using either the average shear wave velocity (VS30) or the average SPT-N values (N30) for upper 30 m in soils is the simplest method to carry out various studies including site response and soil-structure interactions. Either the VS30- or the N30-based SSC maps designed according to the National Earthquake Hazards Reduction Program (NEHRP) classification system are effectively used to predict possible locations for future seismic events. The main goal of this study is to generate maps using the Geographic Information System (GIS) for the SSC in Kahramanmaras city, influenced by both East Anatolian Fault and Dead Sea Fault Zones, using both VS30 and N30 values. The study also presents a series of GIS maps produced using the shear wave velocity (VS) and SPT-N values at the depths of 5 m, 10 m, 15 m, 20 m, and 25 m. Furthermore, the study estimates the bed rock level and generates the SSC maps for the average VS values through overburden soils by using the NEHRP system. The VS30 maps categorize the study area mainly under class C and limited number of areas under classes B and D, whereas the N30 maps classify the study area mainly under class D. Both maps indicate that the soil classes in the study area are different to a high extent. Eventually, the GIS maps complied for the purpose of urban development may be utilized effectively by engineers in the field.


Sign in / Sign up

Export Citation Format

Share Document