scholarly journals Seismic hazard assessment and local site effect evaluation in Hanoi, Vietnam

2017 ◽  
Vol 17 (4B) ◽  
pp. 82-95
Author(s):  
Nguyen Anh Duong ◽  
Pham Dinh Nguyen ◽  
Vu Minh Tuan ◽  
Bui Van Duan ◽  
Nguyen Thuy Linh

In this study, we have carried out the probabilistic seismic hazard analysis in Hanoi based on the latest seismotectonic data. The seismic hazard map shows peak ground acceleration values on rock corresponding to the 10% probability of exceedance in a 50-year time period (approximately return periods of 500 years). The calculated results reveal that the maximum ground acceleration can occur on rock in Hanoi is about 0.13 g corresponding to the shaking intensity level of VIII on the MSK-64 scale. The ground motion values calculated on rock vary according to the local site conditions. We have evaluated and corrected the local site effects on ground motion in Ha Dong district, Hanoi by using microtremor and borehole data. The Nakamura’s H/V spectral ratio method has been applied to establish a map of ground dominant periods in Ha Dong with a TS range of 0.6 - 1.2 seconds. The relatively high values of periods indicate that Ha Dong has soft soil and thick Quaternary sediments. The sediment thickness in Ha Dong is calculated to vary between 30 - 75 m based on ground dominant periods and shear wave velocity VS30 = 171 - 254 m/s. The results of local site effect on ground motion show that the 500-year return period peak ground acceleration in Ha Dong ranges from 0.13 g to 0.17 g. It is once again asserted that the seismic hazard in Hanoi is a matter of great concern, due not only to the relatively high ground acceleration, but also to the seismic characteristics of soil (low shear wave velocity, ground dominant period of approximately 1 second).

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Zaw Lin Kyaw ◽  
Subagyo Pramumijoyo ◽  
Salahuddin Husein ◽  
Teuku Faisal Fathani ◽  
Junji Kiyono

Microtremor is currently considered the foremost tool in site effect studies. The ground motion is estimated with microtremor observations, meaning that subsoil mechanical properties and geometry are evaluated and from them an estimate of local amplification is computed. Here, the ground motion is studied by the site effects of seismic hazard zonation of urban areas in Yogyakarta City. The main purpose of this paper is zoning the geological engineering features and assessing seismic of the research urban area. In this regard, the microtremors are measured at 274 sites by single station sampling method and Nakamura technique. The microtremors of all over the city are processed by a model of Mitutoyo-GPL-6A3P. The amplification factor generally ranges between 0.70 and 5.56 and the natural frequency normally varies between 0.40 and 3.30 Hz. The information layers are prepared in GMT used for detecting the zonation of potential seismic hazard. The shear wave velocity is calculated in 12 existing drilling sites based on the geotechnical approach of SPT for soil condition. To study the ground motion, geological engineering condition is investigated using amplification factor, natural frequency, shear wave velocity maps which are analyzed using densely single microtremor observation and SPT from existing drilling sites. Keywords: Ground motion, amplification factors, natural frequency; H/V spectral ratio, microtremor observations, Yogyakarta Urban


2012 ◽  
Vol 238 ◽  
pp. 864-867
Author(s):  
Long Wei Chen ◽  
Wei Ming Wang ◽  
Rui Sun

Site characteristic period is an important index in seismic zonantion and seismic resistance design. The characteristics of the ground motions are conceptually related with site characteristics. A simplified single-layer model is used for simulating horizontal strata under seismic loading to calibrate the correlation of site characteristic period with the predominant period of ground motion. The analytical results show that the inputted motions were amplified considerably by the site typically for the period components which were close to the site characteristic periods; with the shear wave velocity of the soil layer decreases with respect to the initial shear wave velocity, the predominant period of ground motion increases; the site characteristic periods are consistent with the predominant periods of the ground motion.


2021 ◽  
pp. 875529302110569
Author(s):  
Grace A Parker ◽  
Jonathan P Stewart

We present an ergodic site response model with regional adjustments for use with subduction zone ground-motion models. The model predicts site amplification of peak ground acceleration, peak ground velocity, and 5% damped pseudo-spectral accelerations of the orientation-independent horizonal component for oscillator periods from 0.01 to 10 s. The model depends on the time-averaged shear-wave velocity in the upper 30 m ( VS30), basin depth, and region and is independent of subduction earthquake type. It has three components: a linear site-amplification term in the form of VS30-scaling, a nonlinear term that depends on VS30 and shaking intensity parameterized by peak ground acceleration at the reference-rock velocity condition of 760 m/s, and a basin sediment-depth term for Japan and Cascadia conditioned on the depth to the 2.5 km/s shear-wave velocity isosurface ( Z2.5). A global VS30-scaling model is provided along with regional adjustments for Japan, Taiwan, South America, Alaska, and Cascadia. The nonlinear model is global, with a functional form that has often been used to fit nonlinear responses inferred from simulations, but here we calibrate it empirically. Relative to a prior model for shallow earthquakes in active tectonic regions, our subduction zone global VS30-scaling is comparable at short periods (<1.0 s) but weaker at long periods, while the nonlinear site response is generally less pronounced but extends to lower levels of shaking. Basin depth models are conditioned on the difference of the actual Z2.5 and a VS30-conditioned mean Z2.5. Sites with positive differential depths have increased long-period site responses and decreased short-period responses, with the opposite occurring for negative differential depths.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012037
Author(s):  
I U Meidji ◽  
S Mulyati ◽  
N R Janat ◽  
H Jayadi ◽  
Asrafil

Abstract University of Tadulako is the largest State University in Palu City. When an earthquake with a magnitude of 7.4 Mw on September 28, 2018, occurred, many buildings were damaged and even collapsed at that time, even causing casualties due to the rubble. Research on the Local Site Effect is essential for the assessment of seismic hazard. In this study, the local site effect was analyzed using the HVSR method based on microtremor data. The predominant Period (To) ranges between 1.709 s to 3.816 s, indicates that this area consists of alluvium and has a very thick sediment layer. Another parameter calculated in this paper is the peak ground acceleration (PGA) with values from 0.914 g to 0.924 g. This value is the first indicated soil damage level due to ground motions. The results of this study can be used as a consideration in the development of regional spatial planning and building structures based on earthquake analysis.


2010 ◽  
Vol 1 (1) ◽  
pp. 25-41 ◽  
Author(s):  
T. G. Sitharam ◽  
K. S. Vipin

The local site effects play an important role in the evaluation of seismic hazard. The proper evaluation of the local site effects will help in evaluating the amplification factors for different locations. This article deals with the evaluation of peak ground acceleration and response spectra based on the local site effects for the study area. The seismic hazard analysis was done based on a probabilistic logic tree approach and the peak horizontal acceleration (PHA) values at the bed rock level were evaluated. Different methods of site classification have been reviewed in the present work. The surface level peak ground acceleration (PGA) values were evaluated for the entire study area for four different site classes based on NEHRP site classification. The uniform hazard response spectrum (UHRS) has been developed for the city of Bangalore and the details are presented in this work.


2020 ◽  
Vol 36 (3) ◽  
pp. 1331-1358 ◽  
Author(s):  
Van-Bang Phung ◽  
Chin Hsiung Loh ◽  
Shu Hsien Chao ◽  
Norman A Abrahamson

A ground motion prediction equation (GMPE) is presented for computing the median and standard deviation of peak ground acceleration (PGA) and 5% damped pseudo-spectral acceleration (PSA) for periods between 0.01 s and 5.0 s for probabilistic seismic hazard analysis (PSHA) and engineering applications in Taiwan. An integrated strong motion dataset consisting of two subduction earthquake regions was selected from 3314 recordings from Taiwan with M4.5 to M7.1 and 3376 recordings from Japan with M6.5 to M9.1. This dataset was then used to validate, and refit where necessary, the function form provided by Abrahamson et al. for application to Taiwan subduction earthquakes. The proposed model accounts for the extrapolation behaviors associated with the large-magnitude scaling and the near-source scaling terms, both of which were developed empirically by using the combined Taiwan–Japan dataset. The distance attenuation and site term were developed specifically for the Taiwan region. The site term is based on two parameters; the time-averaged shear wave velocity of the top 30 m depth ( VS30) and the depth-to-the-shear wave velocity horizon of 1.0 km/s ( Z1.0).


Sign in / Sign up

Export Citation Format

Share Document