I1̄ – I2/c ferroelastic phase transition in the Ca0.2Pb0.8Al2Si2O8 feldspar as a function of temperature

2000 ◽  
Vol 64 (2) ◽  
pp. 285-290 ◽  
Author(s):  
P. Benna ◽  
M. Tribaudino ◽  
E. Bruno

AbstractFeldspar of composition Ca0.2Pb0.8Al2Si2O8 (PbF80An20) was synthesized from melt and subsequently isothermally annealed at T = 960°C for 4 days. In situ HT X-ray powder spectra of PbF80An20 feldspar, triclinic I1̄ at room temperature, were collected in the temperature range 20–800°C, and a displacive continuous ferroelastic transition to a I2/c monoclinic phase was observed. An analysis of the symmetry-required components of the spontaneous strain tensor reveals the second order character (β = 0.46 ± 0.02) of the transition with TC = 680 ± 15°C. A linear coupling was observed between the e4 and e6 components of the spontaneous strain. The transition is analogous to those observed, with increasing temperature, along the join An–SrF and in disordered Na-rich alkali feldspars. A comparison with Ca0.2Sr0.8Al2Si2O8 feldspar (TC = 680°C, McGuinn and Redfern, 1997) shows that PbF80An20 has a higher spontaneous strain (εs = 0.028 in PbF80An20vs 0.020 in Ca0.2Sr0.8Al2Si2O8) and a higher e4 component, possibly related to the higher distortion of the non-tetrahedral polyhedron in lead feldspar.

2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


2016 ◽  
Vol 850 ◽  
pp. 191-196 ◽  
Author(s):  
Wei Wang ◽  
Cun Lei Zou ◽  
Ren Geng Li ◽  
Wen Wen ◽  
Hui Jun Kang ◽  
...  

In situ synchrotron X-ray diffraction was used to study a deformed Cu-0.88 Fe-0.24 P alloy during heating process. The measurements were performed at room temperature and also at high temperatures up to 893 K in order to determine the recovery, ageing and recrystallization process. With the increase of temperature, the angles of copper matrix peaks moved left and the FWHM (full width at half maximum) decreased slightly. Fe3P precipitates were first detected at 533 K, reached the maximum at 673 K, and re-dissolved into matrix at 853 K. A dramatic decrease in FWHM was observed accompanied by the precipitation of Fe3P phases, indicating the reduction of lattice distortion of copper matrix.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


1995 ◽  
Vol 10 (3) ◽  
pp. 173-177 ◽  
Author(s):  
P. Ballirano ◽  
A. Maras ◽  
R. Caminiti ◽  
C. Sadun

New powder X-ray data for cancrinite [ideally Na8Si6Al6O24 (CO3)2·2 H2O] are reported along with in-situ real-time thermal processes recorded using energy dispersive X-ray diffractometry (EDXD). A completely anhydrous phase is obtained after heating the sample up to 600 °C and quickly cooling it to room temperature, as shown by means of both Rietveld analysis and IR spectroscopy. The anhydrous phase does not show any tendency to re-acquire molecular water. During the heating process, at around 450 °C, a peak splitting is observed, possibly due to a reversible phase transition.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 202
Author(s):  
Miranda Martinez ◽  
Anil R. Chourasia

The Ti/SnO2 interface has been investigated in situ via the technique of x-ray photoelectron spectroscopy. Thin films (in the range from 0.3 to 1.1 nm) of titanium were deposited on SnO2 substrates via the e-beam technique. The deposition was carried out at two different substrate temperatures, namely room temperature and 200 °C. The photoelectron spectra of tin and titanium in the samples were found to exhibit significant differences upon comparison with the corresponding elemental and the oxide spectra. These changes result from chemical interaction between SnO2 and the titanium overlayer at the interface. The SnO2 was observed to be reduced to elemental tin while the titanium overlayer was observed to become oxidized. Complete reduction of SnO2 to elemental tin did not occur even for the lowest thickness of the titanium overlayer. The interfaces in both the types of the samples were observed to consist of elemental Sn, SnO2, elemental titanium, TiO2, and Ti-suboxide. The relative percentages of the constituents at the interface have been estimated by curve fitting the spectral data with the corresponding elemental and the oxide spectra. In the 200 °C samples, thermal diffusion of the titanium overlayer was observed. This resulted in the complete oxidation of the titanium overlayer to TiO2 upto a thickness of 0.9 nm of the overlayer. Elemental titanium resulting from the unreacted overlayer was observed to be more in the room temperature samples. The room temperature samples showed variation around 20% for the Ti-suboxide while an increasing trend was observed in the 200 °C samples.


2018 ◽  
Vol 60 (9) ◽  
pp. 1847
Author(s):  
М.В. Байдакова ◽  
П.В. Дороватовский ◽  
Я.В. Зубавичус ◽  
Е.М. Иванькова ◽  
С.С. Иванчев ◽  
...  

AbstractUsing powerful synchrotron X-ray radiation of the beamline “Belok” operated by the National Research Center “Kurchatov Institute,” we perform X-ray diffraction (XRD) study of an intact, virgin (not subjected to any external mechanical loads) particle isolated from reactor powder of ultrahigh molecular weight polyethylene. Along with the peaks originating from the orthorhombic phase, we detect the peaks characteristic of the monoclinic phase that is stable only under mechanical stress, suggesting that the mechanical stress that leads to the formation of the monoclinic phase and persists at room temperature develops during the polymer synthesis. The monoclinic phase gradually disappears when the particle is heated stepwise in increments of 5 K, and its peaks become undetectable when the temperature reaches 340 K. We contrast the results obtained for the phase composition of the virgin particle to those for a tablet prepared by compaction of the same reactor powder at room temperature. XRD analyses of the tablet were performed on D2 Phaser (Bruker) instrument. The monoclinic phase that originates during the polymer synthesis and the one that forms in the tablet during compaction have different parameters. We discuss the mechanisms by which these two different monoclinic phases originate during the processes involved.


Alloys of Al-5% Pb and Al-5% Pb-0.5% Si (by mass) have been manufactured by rapid solidification and then examined by transmission electron microscopy. The rapidly solidified alloy microstructures consist of 5-60 nm Pb particles embedded in an Al matrix. The Pb particles have a cube-cube orientation relation with the Al matrix, and are cub-octahedral in shape, bounded by {100} Al, Pb and {111} Al, Pb facets. The equilibrium Pb particle shape and therefore the anisotropy of solid Al-solid Pb and solid Al-liquid Pb surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 550°C. The ani­sotropy of solid Al-solid Pb surface energy is constant between room temperature and the Pb melting point, with a {100} Al, Pb surface energy about 14% greater than the {111} Al, Pb surface energy, in good agreement with geometric near-neighbour bond energy calculations. The {100} AI, Pb facet disappears when the Pb particles melt, and the anisotropy of solid Al-liquid Pb surface energy decreases gradually with increasing temperature above the Pb melting point, until the Pb particles become spherical at about 550°C.


2014 ◽  
Vol 1645 ◽  
Author(s):  
Romain VAUCHY ◽  
Renaud.C. BELIN ◽  
Anne-Charlotte ROBISSON ◽  
Fiqiri HODAJ

ABSTRACTUranium-plutonium mixed oxides incorporating high amounts of plutonium are considered for future nuclear reactors. For plutonium content higher than 20%, a phase separation occurs, depending on the temperature and on the oxygen stoichiometry. This phase separation phenomenon is still not precisely described, especially at high plutonium content. Here, using an original in situ fast X-ray diffraction device dedicated to radioactive materials, we evidenced a phase separation occurring during rapid cooling from 1773 K to room temperature at the rate of 0.05 and 2 K per second for a (U0.55Pu0.45)O2-x compound under a reducing atmosphere. The results show that the cooling rate does not impact the lattice parameters of the obtained phases at room temperature but their fraction. In addition to their obvious fundamental interest, these results are of utmost importance in the prospect of using uranium-plutonium mixed oxides with high plutonium content as nuclear fuels.


Sign in / Sign up

Export Citation Format

Share Document