Steverustite, Pb52+(OH)5[Cu+(S6+O3S2–)3](H2O)2, a new thiosulphate mineral from the Frongoch Mine Dump, Devils Bridge, Ceredigion, Wales: description and crystal structure

2009 ◽  
Vol 73 (2) ◽  
pp. 235-250 ◽  
Author(s):  
M. A. Cooper ◽  
F. C. Hawthorne ◽  
E. Moffatt

AbstractSteverustite, ideally Pb52+(OH)5[Cu+(S6+O3S2–)3](H2O)2, is a new supergene mineral from the Frongoch mine dump, Devils Bridge, Ceredigion, Wales. It generally forms fibrous fan-like bundles that occur in small cavities in quartz veins with other supergene species. Crystals are fibrous to acicular, elongated along [010], and are bounded by (h0l) faces too small to index reliably. It is transparent, colourless to white with a white streak, has a vitreous lustre, does not fluoresce under ultraviolet light and is brittle with a splintery fracture. The calculated density is 5.150 g/cm3, and the calculated mean refractive index is 1.94. The mineral is monoclinic, P21/n, a 12.5631(7), b 8.8963(5), c 18.0132(11) Å, β 96.459(1)º, V 2000.5(3) Å3, Z = 4, a:b:c = 1.41217:1:2.02480. The seven strongest lines in the X-ray powder diffraction pattern are as follows: d (Å), I, (h k l): 3.934, 10, (Ī14); 3.934, 8, (Ī11); 3.348, 7, (313); 6.211, 6, (200); 4.797, 6, (211); 3.026, 6, (314); 2.837, 5, (016). Chemical analysis by electron microprobe gave PbO 72.59, SO3 15.78, Cu2O 4.47, S2– 6.32, H2O 4.83, O=S2– –3.15, total 100.84 wt.% where the amount of H2O was determined by crystal-structure analysis. The resulting empirical formula is Pb4.992+Cu0.96+(S6+O3S2–)3.03(OH)4.88(H2O)1.67, based on O + OH + H2O + S2– = 18.67 a.p.f.u. (atoms per formula unit) with H2O = 1.67 a.p.f.u. (from crystal-structure solution and refinement).The crystal structure of steverustite was solved by direct methods and refined to R1 = 2.7% for 3366 unique (Fo > 4σF) reflections. There are five distinct Pb2+ cations with coordination numbers from [8] to [11], all of which show stereoactive lone-pair behaviour and which form a strongly bonded cluster of composition [Pb5(OH)5]. There is one Cu+ cation triangularly coordinated by three S2– atoms that belong to three thiosulphate groups, forming a Cu+(S6+O3S2–)3 group. The [Pb5(OH)5] units and [Cu(S2O3)3] groups occur at the vertices of interpenetrating 36 nets to form layers of composition [Pb5(OH)5Cu(S2O3)3] parallel to (010) which are linked by weaker bonds. Examination of the stereochemistry of thiosulphate and thionate structures shows that the combination of <S–O> and S–S distances are distinct for these two types of structures.

2012 ◽  
Vol 76 (5) ◽  
pp. 1119-1131 ◽  
Author(s):  
M. A. Cooper ◽  
Y. A. Abdu ◽  
N. A. Ball ◽  
F. C. Hawthorne ◽  
M. E. Back ◽  
...  

AbstractIanbruceite, ideally [Zn2(OH)(H2O)(AsO4)](H2O)2, is a new supergene mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia. It occurs as thin platy crystals up to 80 μm long and a few μm thick, which form flattened aggregates up to 0.10 mm across, and ellipsoidal aggregates up to 0.5 mm across. It is associated with coarse white leiteite, dark blue köttigite, minor legrandite and adamite. Ianbruceite is sky blue to very pale blue with a white streak and a vitreous lustre; it does not fluoresce under ultraviolet light. It has perfect cleavage parallel to (100), is flexible, and deforms plastically. The Mohs hardness is 1 and the calculated density is 3.197 g cm-3. The refractive indices are α = 1.601, β = 1.660, γ = 1.662, all ±0.002; 2Vobs = 18(2)°, 2Vcalc = 20°, and the dispersion is r < v, weak. Ianbruceite is monoclinic, space group P21/c, a = 11.793(2), b = 9.1138(14), c = 6.8265(10) Å, β = 103.859(9)°, V = 712.3(3) Å3, Z = 4, a:b:c = 1.2940:1:0.7490. The seven strongest lines in the X-ray powder diffraction pattern [d(Å), I, (hkl)] are as follows: 11.29, 100, (100); 2.922, 17, (130); 3.143, 15, (202); 3.744, 11, (300); 2.655, 9, (230); 1.598, 8, (152); 2.252, 7, (222). Chemical analysis by electron microprobe gave As2O5 36.27, As2O3 1.26, Al2O3 0.37, ZnO 49.72, MnO 0.32, FeO 0.71, K2O 0.25, H2Ocalc 19.89, sum 108.79 wt.%; the very high oxide sum is due to the fact that the calculated H2O content is determined from crystal-structure analysis, but H2O is lost under vacuum in the electron microprobe.The crystal structure of ianbruceite was solved by direct methods and refined to an R1 index of 8.6%. The As is tetrahedrally coordinated by four O anions with a mean As O distance of 1.687 Å. Zigzag [[5]Zn[6]Znϕ7] chains extend in the c direction and are linked in the b direction by sharing corners with (AsO4) tetrahedra to form slabs with a composition [Zn2(OH)(H2O)(AsO4)]. The space between these slabs is filled with disordered (H2O) groups and minor lone-pair stereoactive As3+. The ideal formula derived from chemical analysis and crystal-structure solution and refinement is [Zn2(OH)(H2O)(AsO4)](H2O)2.


2012 ◽  
Vol 76 (1) ◽  
pp. 45-57 ◽  
Author(s):  
F.C. Hawthorne ◽  
M. A. Cooper ◽  
Y. A. Abdu ◽  
N. A. Ball ◽  
M. E. Back ◽  
...  

AbstractDavidlloydite, ideally Zn3(AsO4)2(H2O)4, is a new supergene mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia. It occurs as elongated prisms (∼10:1 length-to-width ratio) that are flattened on {010}, and up to 100 × 20 × 10 μm in size. The crystals occur as aggregates (up to 500 μm across) of subparallel to slightly diverging prisms lying partly on and partly embedded in fine-grained calcioandyrobertsite. Crystals are prismatic along [001] and flattened on {010}, and show the forms {010} dominant and {100} subsidiary. Davidlloydite is colourless with a white streak and a vitreous lustre; it does not fluoresce under ultraviolet light. The cleavage is distinct on {010}, and no parting or twinning was observed. The Mohs hardness is 3 – 4. Davidlloydite is brittle with an irregular to hackly fracture. The calculated density is 3.661 g cm–3. Optical properties were measured with a Bloss spindle stage for the wavelength 590 nm using a gel filter. The indices of refraction are α = 1.671, β = 1.687, γ = 1.695, all ±0.002; the calculated birefringence is 0.024; 2Vobs = 65.4(6)°, 2Vcalc = 70°; the dispersion is r < v, weak; pleochroism was not observed. Davidlloydite is triclinic, space group P1, with a = 5.9756(4), b = 7.6002(5), c = 5.4471(4) Å, α = 84.2892(9), β = 90.4920(9), γ = 87.9958(9)°, V = 245.99(5) Å3, Z = 1 and a:b:c = 0.7861:1:0.7167. The seven strongest lines in the X-ray powder diffraction pattern [listed as d (Å), I, (hkl)] are as follows: 4.620, 100, (011, 10); 7.526, 71, (010); 2.974, 49, (200, 01); 3.253, 40, (021, 120); 2.701, 39, (10, 002, 1); 5.409, 37, (001); 2.810, 37, (210). Chemical analysis by electron microprobe gave As2O5 43.03, ZnO 37.95, CuO 5.65, H2O(calc) 13.27, sum 99.90 wt.%. The H2O content and the valence state of As were determined by crystal structure analysis. On the basis of 12 anions with H2O = 4 a.p.f.u., the empirical formula is (Zn2.53Cu0.39)Σ2.92As2.03O8(H2O)4.The crystal structure of davidlloydite was solved by direct methods and refined to an R1 index of 1.51% based on 1422 unique observed reflections collected on a three-circle rotating-anode (MoKα radiation) diffractometer equipped with multilayer optics and an APEX-II detector. In the structure of davidlloydite, sheets of corner-sharing (As5+O4) and (ZnO4) tetrahedra are linked by ZnO2(H2O)4 octahedra. The structure is related to that of parahopeite.


2017 ◽  
Vol 81 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Atali A. Agakhanov ◽  
Leonid A. Pautov ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
Vladimir Yu Karpenko ◽  
...  

AbstractOdigitriaite, a new Cs, Na, Ca borosilicate mineral, was discovered in moraine adjacent to the Darai-Pioz alkaline massif in the upper reaches of the Darai-Pioz river at the intersection of the Turkestansky, Zeravshansky and Alaisky mountain ridges, Tajikistan. It occurs as irregular thin flakes associated with quartz, pectolite, baratovite, fluorite, pekovite, polylithionite, aegirine, leucosphenite, pyrochlore, neptunite, reedmergnerite, mendeleevite-(Ce), zeravshanite and sokolovaite. It is colourless with a white streak, is translucent and has a vitreous lustre; it does not fluoresce under ultraviolet light. Odigitriaite is brittle with an uneven fracture and a Mohs hardness of 5. The calculated density is 2.80(2) g/cm3. The indices of refraction are α = 1.502, β = 1.564, γ = 1.576; 2Vobs = 46(2)°, dispersion is weak r > v, and there is no pleochroism. The chemical composition is as follows (electron microprobe, H2O calculated from structure): SiO2 55.30, Al2O3 0.09, Y2O3 0.44, MnO 0.94, FeO 0.10, PbO 0.21, K2O 0.01 Cs2O 8.36, B2O3 4.75, H2O 0.37, F 1.74, O = F2 –0.74, total 99.43 wt.%. The empirical formula of odigitriaite is Cs0.90Na5.12Ca4.68Mn0.20Y0.06Fe0.02Pb0.01[Si13.92Al0.03B2.06O38]F1.39(OH)0.62. The end-member formula is CsNa5Ca5[Si14B2O38]F2. The strong reflections in the powder X-ray diffraction pattern are: [(d, Å), (I, %), (hkl)]: 5.45 (25) (1 1 3), 4.66 (33) (3 1 1), 4.40 (26) (0 2 2), 4.10 (36) (3 1 3), 3.95 (25) (3̄ 1 3), 2.85 (31) (2 2 2), 2.68 (40) (0 0 6), 3.62 (45) (0 2 4), 3.35 (100) (2̄ 2 4), 3.31 (30) (3̄ 1 5), 3.25 (35) (4 0 4), 3.04 (60) (4̄ 2 2), 2.925 (22) (4̄ 2 3), 1.813 (23) (9 1 0). Odigitriaite is monoclinic, space group C2/c, a = 16.652(5), b = 9.598 (3), c = 22.120(7) Å, β= 92.875(14)°, V = 3530.9(1.9) Å3, Z = 4. The crystal structure of odigitriaite was solved by direct methods and refined to an R1 value of 2.75% based on single-crystal X-ray data. It is a double-layer sheet-borosilicate mineral; Cs and Na are intercalated within the double-layer sheet, and the double layers are linked by interstitial Ca and Na atoms.


2010 ◽  
Vol 74 (5) ◽  
pp. 863-869 ◽  
Author(s):  
S. J. Mills ◽  
A. R. Kampf ◽  
P. A. Williams ◽  
P. Leverett ◽  
G. Poirier ◽  
...  

AbstractHydroniumpharmacosiderite, ideally (H3O)Fe4(AsO4)3(OH)4·4H2O, is a new mineral from Cornwall, UK, probably from the St. Day group of mines. It occurs as a single yellowish green, slightly elongated cube, measuring 0.17 mm ×0.14 mm ×0.14 mm. The mineral is transparent with a vitreous lustre. It is brittle with a cleavage on {001}, has an irregular fracture, a white streak and a Mohs hardness of 2–3 (determined on H3O-exchanged pharmacosiderite). Hydroniumpharmacosiderite has a calculated density of 2.559 g cm–3 for the empirical formula. The empirical formula, based upon 20.5 oxygen atoms, is: [(H3O)0.50K0.48Na0.06]1.04(Fe3.79Al0.22)4.01[(As2.73P0.15)2.88O12](OH)4·4H2.14O. The five strongest lines in the X-ray powder diffraction pattern are [dobs(Å),Iobs,(hkl)]: 8.050,100,(001); 3.265,35,(112); 2.412,30,(113); 2.830,23,(202); 4.628,22,(111). Hydroniumpharmacosiderite is cubic, space group with a = 7.9587(2) Å, V = 504.11(2) Å3 and Z = 1. The crystal structure was solved by direct methods and refined to R1 = 0.0481 for 520 reflections with I > 2σ(I). The structure is consistent with determinations for H3O-exhchanged pharmacosiderite and the general pharmacosiderite structure type.


2000 ◽  
Vol 55 (11) ◽  
pp. 1079-1082
Author(s):  
Mustafa M. El-Abadelah ◽  
Salim S. Sabri ◽  
Monther A. Khanfar ◽  
Wolfgang Voelter ◽  
Cacilia Maichle-Mössmer

X-ray crystal structure data for the substituted 5-(2,3-dihydro-7-benzofuryl)-2-methylpyrazolo[ 4,3-d]pyrimidin-7-one (3) reveal that the two bicyclic heteroaryl systems show no coplanarity along their joint C (5) - C (11) axis with an interplanar angle of 9.6°. Nonetheless, the spatial interatomic distance for O(17)-N(6), determined as 2.73 A, allows the formation of a relatively weak intramolecular hydrogen bond between the pyrimidinone N(6)-H and the O(17) lone pair of the dihydrobenzofuryl moiety.


2010 ◽  
Vol 25 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Y. Q. Chen ◽  
J. K. Liang ◽  
Y. X. Gu ◽  
J. Luo ◽  
J. B. Li ◽  
...  

A novel hexaborate, Na2ZnB6O11, has been successfully synthesized by solid-state reaction and ab initio crystal-structure analysis has been completed using powder X-ray diffraction data. The compound crystallizes in the monoclinic space group Cc with lattice parameters a=10.7329(2) Å b=7.4080(3) Å, c=11.4822(2) Å, and β=112.16(2)°. The number of chemical formula per unit cell is Z=4 and the calculated density is 2.768(3) g/cm3. It represents a new structure type in which double-bridge-ring [B6O11]4− groups were found as fundamental building units. The infrared spectrum confirms the presence of both [BO3]3− groups and [BO4]5− groups.


2021 ◽  
Vol 12 (2) ◽  
pp. 187-191
Author(s):  
Varun Sharma ◽  
Bubun Banerjee ◽  
Gurpreet Kaur ◽  
Vivek Kumar Gupta

An analog of spirooxindole[pyrano-bis-2H-l-benzopyran] derivatives namely 5-bromospiro [indoline-3,7'-pyrano[3,2-c:5,6-c']dichromene]-2,6',8'-trione was synthesized via one-pot pseudo three-component reaction of one equivalent of 5-bromoisatin and two equivalents of 4-hydroxycoumarin using mandelic acid as a naturally occurring organo catalyst in aqueous ethanol under reflux conditions. The synthesized compound was characterized by FT-IR, 1H NMR, 13C NMR, and HRMS data. Crystal structure was determined by using single X-ray crystallography technique. It was found that the crystals are triclinic with space group P-1, C108H60Br4N4O29S2: a = 11.8333(6) Å, b = 12.8151(6) Å, c = 17.1798(8) Å, α = 77.317(4)°, β = 74.147(4)°, γ = 66.493(5)°, V = 2280.0(2) Å3, Z = 1, T = 149.99(10) K, μ(MoKα) = 1.902 mm-1, Dcalc = 1.647 g/cm3, 11545 reflections measured (3.836° ≤ 2Θ ≤ 50.998°), 8310 unique (Rint = 0.0488, Rsigma = 0.0875) which were used in all calculations. The final R1 was 0.0622 (I > 2σ(I)) and wR2 was 0.1994 (all data). The crystal structure was solved by direct methods and refined by full-matrix least-squares procedure to a final R-value of 0.0622 for 6264 observed reflections. The crystal structure was stabilized by an elaborate system of N-H···O, O-H···O, C-H···π, and π···π interactions involving solvent molecules to form supramolecular structure.


2013 ◽  
Vol 77 (3) ◽  
pp. 353-366 ◽  
Author(s):  
M. A. Cooper ◽  
T. A. Husdal ◽  
N. A. Ball ◽  
Y. A. Abdu ◽  
F. C. Hawthorne

AbstractSchlüterite-(Y), ideally (Y,REE)2Al(Si2O7)(OH)2F, is a new silicate mineral species from the Stetind pegmatite, Tysfjord, Nordland, Norway. It forms dense, fibrous, radiating aggregates (up to ∼2 mm) diverging to individual needle-like crystals (up to ∼1 mm long) in cavities. Crystals are acicular to bladed, flattened on {001} and elongated along [010], and the dominant form is {001}. Schlüterite-(Y) is transparent, pale pink with a white streak and a vitreous lustre, and does not fluoresce under short-wave ultraviolet light. Mohs hardness is 5½–6, and schlüterite-(Y) is brittle with an irregular fracture, and has no cleavage. The calculated density is 4.644 g/cm3. The indices of refraction are α = 1.755, β = 1.760, γ = 1.770, all ± 0.005, 2Vobs = 71.8 (5)°, 2Vcalc = 71°, non-pleochroic, optic orientation is X ˆ a = 83.1° (β obtuse), Y//b, Z ˆ c = 50.3° (β acute). Schlüterite-(Y) is monoclinic, space group P21/c, a 7.0722(2), b 5.6198(1), c 21.4390(4) Å, β 122.7756(3)°, V 716.43(5) Å3, Z = 4. The seven strongest lines in the X-ray powder-diffraction pattern are as follows: [d (Å), I, (hkl)]: 4.769, 100, (012); 2.972, 55, (14); 3.289, 51, (112); 2.728, 49, (16); 2.810, 37, (020); 3.013, 37, ((16); 4.507, 36, (004). Chemical analysis by electron microprobe gave SiO2 22.64, Al2O3 9.45, Y2O3 15.35, La2O3 3.25, Ce2O3 9.69, Pr2O3 2.05, Nd2O3 9.50, Sm2O3 3.57, Gd2O3 4.65, Dy2O3 4.21, Er2O3 2.31, Yb2O3 1.86, F 2.71, H2Ocalc 3.78, O = F −1.14, sum 93.88 wt%. The H2O content was determined by crystal-structure analysis. On the basis of 10 anions with (OH) + F = 3 a.p.f.u. (atoms per formula unit), the empirical formula is (Y0.73Ce0.32Nd0.30Gd0.14Dy0.12La0.11Sm0.11Pr0.07Er0.06Yb0.05)Σ=2.01Al0.99Si2.01O7(OH)2.24F0.76. The crystal structure of schlüterite-(Y) was solved by direct methods and refined to an R1 index of 1.8% based on 1422 unique observed reflections. In the structure of schlüterite-(Y), Al(OH)4O2 octahedra share (OH)–(OH) edges to form [MΦ4] chains that are decorated by (Si2O7) groups that bridge O vertices of neighbouring octahedra in a staggered fashion on either side of the chain. These [Al(OH)2(Si2O7)] chains extend parallel to b, and are linked into a continuous framework via bonds to interstitial [8](Y,REE) (= <2.400 Å>) and [9](Y,REE) (= <2.548 Å>) atoms.


1988 ◽  
Vol 66 (7) ◽  
pp. 1600-1604 ◽  
Author(s):  
Walter A. Szarek ◽  
George W. Hay ◽  
Ramesh K. Sood ◽  
Konia Trouton ◽  
Suzanne Fortier

The structure of the major product of the reaction of 1,2-dideoxy-3,4:5,6-di-O-isopropylidene-1-C-nitro-D-arabino-hex-1-enitol with 30% hydrogen peroxide and aqueous sodium hydrogencarbonate has been confirmed by X-ray crystallography to be that of 1,2-anhydro-3,4:5,6-di-O-isopropylidene-1-C-nitro-D-mannitol (2). The crystal structure of 2, C12H19NO7, is orthorhombic, P212121, with cell dimensions a = 10.269(3), b = 15.115(7), c = 9.295(8) Å, and Z = 4. The calculated density is Dx = 1.336 gcm−3. The structure was solved by direct methods and refined to a residual R = 0.052. The molecule has a 2G− conformation having bond lengths and angles in agreement with those observed in related structures, except for the C(1)—C(2), C(2)—C(3), and O(2N)—N bond distances which were found to be unusually small.


1988 ◽  
Vol 66 (2) ◽  
pp. 246-248 ◽  
Author(s):  
Giorgio Adembri ◽  
Mirella Scotton ◽  
Alessandro Sega

The stereochemistry of 3a, one of the 2-acetyl-3,5,6-trihydroxy-5,6-dimethylcyclohexenones, obtained by rearrangement of 2,3-diacetyl-4-hydroxy-4-methylcyclopentenone, 2a, under basic conditions, was determined by an X-ray crystal structure analysis. An ORTEP plot shows the configuration of (5RS,6RS)-2-acetyl-3,5,6-trihydroxy-5,6-dimethylcyclohexenone and the presence of a conjugated chelated system involving the H-bonding between O(3)… H(31) and H(31)… O(2).Crystals of 3a are triclinic, a = 10.979(4), b = 7.766(3), c = 6.382(3) Å, α = 86.23(2), β = 72.86(1), γ = 88.23(2)°, Z = 2, space group [Formula: see text]. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.036 and Rw = 0.039 for 1324 reflections with I > 3σ(I).The structure of 3a consists of centrosymmetric dimers which contain a nearly planar bicyclic system of a cyclohexenone moiety and a chelated system (Scheme 2).The pathway of the reaction allows one to put forward some hypothesis on the stereochemistry of some analogues of the cyclohexenones 3a and 3b.Faisant appel à la diffraction des rayons-X, on a déterminé la stéréochimie du composé 3a, une des acétyl-2 trihydroxy-3,5,6 diméthyl-5,6 cyclohexénones obtenues par une transposition de la diacétyl-2,3 hydroxy-4 méthyl-4 cyclopenténone, 2a, en milieu alcalin. Une courbe ORTEP démontre que la configuration est (5RS,6RS) pour l'acétyl-2 trihydroxy-3,5,6 diméthyl-5,6 cyclohexénone et qu'il existe un système de chélation conjugué impliquant des liaisons hydrogènes entre O(3)… H(31) et H(31)… O(2).


Sign in / Sign up

Export Citation Format

Share Document