AID constrains germinal center size by rendering B cells susceptible to apoptosis

Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 547-554 ◽  
Author(s):  
Ahmad Zaheen ◽  
Bryant Boulianne ◽  
Jahan-Yar Parsa ◽  
Shaliny Ramachandran ◽  
Jennifer L. Gommerman ◽  
...  

Abstract The germinal center (GC) is a transient lymphoid tissue microenvironment that fosters T cell–dependent humoral immunity. Within the GC, the B cell–specific enzyme, activation-induced cytidine deaminase (AID), mutates the immunoglobulin locus, thereby altering binding affinity for antigen. In the absence of AID, larger GC structures are observed in both humans and mice, but the reason for this phenomenon is unclear. Because significant apoptosis occurs within the GC niche to cull cells that have acquired nonproductive mutations, we have examined whether a defect in apoptosis could account for the larger GC structures in the absence of AID. In this report, we reveal significantly reduced death of B cells in AID−/− mice as well as in B cells derived from AID−/− bone marrow in mixed bone marrow chimeric mice. Furthermore, AID-expressing B cells show decreased proliferation and survival compared with AID−/− B cells, indicating an AID-mediated effect on cellular viability. The GC is an etiologic site for B-cell autoimmunity and lymphomagenesis, both of which have been linked to aberrant AID activity. We report a link between AID-induced DNA damage and B-cell apoptosis that has implications for the development of B-cell disorders.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 223-223
Author(s):  
Laura Pasqualucci ◽  
Mara Compagno ◽  
Tongwei Mo ◽  
Paula Smith ◽  
Herbert C. Morse ◽  
...  

Abstract Most B cell non-Hodgkin’s lymphomas (B-NHL) derive from germinal center (GC) B cells and their pathogenesis is associated with the accumulation of distinct genetic lesions, including chromosomal translocations and a more recently identified mechanism of genomic instability, termed aberrant somatic hypermutation. These alterations are thought to be due to mistakes occurring during two GC-associated immunoglobulin (Ig) genes remodeling processes: class switch recombination (CSR) and somatic hypermutation (SHM). However, this model has never been formally proven. To conclusively investigate the role of CSR and SHM in the pathogenesis of B-NHL, we examined whether lymphoma development in mice requires the function of activation induced cytidine deaminase (AID), a DNA editing enzyme expressed specifically in GC and activated B cells and essential for both processes. Three transgenic mouse models were generated by crossing lymphoma-prone mice (λMYC, λMYC/IμHABCL6 and IμHABCL6) with mice (AID−/−) that are unable to undergo both SHM and CSR. The λMYC mice develop a diffusely infiltrating monoclonal proliferation of pre-GC origin, with unmutated IgV genes and lack of BCL6 expression, and therefore presumably independent from AID-associated DNA remodeling events. Conversely, lymphomas in λMYC/IμHABCL6 and IμHABCL6 mice recapitulate GC/post GC-derived malignancies, in that the former display somatically mutated IgV genes and upregulation of post-GC markers (CD138) in most of the cases, while the latter develop a splenic lymphoproliferative syndrome that culminates, past 12 months of age, in clonal B cell lymphomas with DLBCL morphology and somatically mutated IgV genes (~70% of the animals) (Cattoretti et al., Cancer Cell 7:445–455, 2005). Mice were monitored for tumor incidence and survival, and a combination of histologic, immunophenotypic and gene expression profiling analysis was used for tumor characterization. As expected, no significant differences in event-free survival and lymphoma type were observed between AID-proficient and AID-deficient λMYC mice, in agreement with their pre-GC derivation. Conversely, a phenotypic shift of the tumor was observed in λMYC/IμHABCL6 mice when bred into an AID−/− background, with >80% of the cases (N=21/26) reverting to a pre-GC phenotype (loss of GC/post GC markers) undistinguishable from that of the λMYC and λMYC/AID−/− mice. Gene expression profile analysis on representative cases (N=10 λMYC/IμHABCL6 and 5 each for λMYC, λMYC/AIDKO, λMYC/IμHABCL6/AIDKO) confirmed significant phenotypic similarities between pre-GC derived λMYC lymphomas and the λMYC/IμHABCL6/AID −/− lymphomas, which co-segregated in a separate cluster from λMYC/IμHABCL6 tumors. Analogously, a significant reduction in DLBCL frequency was observed in the IμHABCL6/AIDKO cohort as compared to IμHABCL6 mice (N= 4/19, 21% vs 8/14, 57%; p=0.03). Taken together, these results indicate that GC-derived lymphomas cannot develop in the absence of AID, thereby providing direct support to the notion that AID-mediated mistakes in antigen receptor gene modification events (CSR and SHM) represent major contributors to B-NHL pathogenesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2397-2397
Author(s):  
Gabriel Brisou ◽  
Laurent Jallades ◽  
Alexandra Traverse-Glehen ◽  
Francoise Berger ◽  
Aurélie Verney ◽  
...  

Abstract Abstract 2397 B cells can undergo at least two differentiation pathways, dependent of T cells or not, starting from follicular or marginal zone B cells respectively. The T-independent response, less understood than the germinal center reaction, is triggered by specific antigens and arises from marginal zone B cells. During this development, some B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR), triggered by the same DNA editing enzyme called Activation Induced Cytidine Deaminase (AID). The splenic marginal zone lymphoma (SMZL) is a rare lymphoproliferative disorder characterized by a clonal expansion of B cells in the marginal zone of the spleen. These B-cells underwent SHM in roughly 60% of the cases but nearly none underwent CSR. These observations suggest that tumor clones originate from a particular activated B cell subset not transiting through the germinal center. In order to confirm this hypothesis, we focused our work on the status and impact of AID in this disease and worked on purified B cells extracted from spleen of well-characterized SMZL cases. We determined AID status by quantitative RT-PCR analysis on 27 SMZL samples and compared it with 5 controls. In the SMZL group the relative level of expression of AID is heterogeneous but two subgroups could be distinguished: one considered as expressing AID (14 cases out of the 27 analyzed), the remaining considered as not expressing AID. When we compared AID expression rate with occurrence of SHM and CSR, no clear correlation between AID expression and presence of SHM or CSR could be observed suggesting that AID, when expressed, is dysfunctional. To address this hypothesis, we first analyzed AID protein by immunohistochemistry and a good correlation between IHC signal and AID mRNA expression level has been observed. As AID gene was not mutated, we next focused our work on AID mRNA splicing variants as these variants exhibit different functions according to the domain of the protein they contain in a murine model. We found that SMZL B cells express various splicing variants of AID mRNA, some of those variants corresponding to the full length isoform (n = 6/17), and other variants corresponding to AID-ΔE4a (n = 2/17) or AID-ΔE4 (n = 7/17) isoforms known to be expressed in normal germinal center B cells as well as in Chronic Lymphocytic and Acute Lymphoblastic Leukemia. These findings indicate that although expressed at the mRNA and protein levels, AID may not be fully functional in SMZL cases. Finally we addressed the potential clinical significance of AID expression. We identified for that purpose a group of “progressive SMZL” patients that had received immuno-chemotherapy after splenectomy because of a significant risk of progression or transformation into aggressive large B cell lymphoma (n = 8/27) pre-empting outcome differences. We found a higher proportion of AID expressing patients in the defined “progressive SMZL” group (n = 7/8) as compared to the proportion found in the “indolent SMZL” group (n = 5/14, p = 0,03). Altogether, this data suggest that the B cell clone leading to SMZL originate from the marginal zone and support the hypothesis of a lymphoproliferative disorder affecting the T-independent response. AID expression in SMZL may reflect an advanced stage of the disease and could be correlated with the evolution of the lymphoma into a more clinically or pathologically aggressive form. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 397-397
Author(s):  
Xiwen Gu ◽  
Carmen J. Booth ◽  
David G. Schatz ◽  
Matthew P. Strout

Abstract Abstract 397 Upon antigenic stimulation of B cells, germinal centers (GCs) are formed where somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes serve to diversify the immune response. SHM and CSR are initiated by the enzyme activation induced cytidine deaminase (AID) through the conversion of C/G base pairs to U-G mismatches. These mismatches are processed by UNG-dependent base excision repair (BER) and MSH2-dependent mismatch repair (MMR) pathways to yield mutations (for SHM) and DNA strand lesions (for CSR). Despite this essential role in immune diversification, the intrinsic activity of AID as a DNA mutator poses a threat to genomic integrity. Indeed, aberrant targeting of AID activity is associated with translocations and point mutations of proto-oncogenes associated with B cell malignancies. A specific dependence on AID in the pathogenesis of lymphomas of GC B cell origin is exemplified in Iμ-Bcl6 knock-in mice. These mice develop a diffuse large B cell lymphoma (DLBL) that resembles the human disease but are protected from development of this lymphoma when crossed onto an Aid-deficient background. To investigate the role of Aid-associated DNA repair in the pathogenesis of this disease, we crossed Iμ-Bcl6 mice onto a background deficient in BER (Ung−/−) and MMR (Msh2−/−). Young healthy Iμ-Bcl6 and Iμ-Bcl6 Ung−/−Msh2−/− mice displayed a normal number and distribution of B cells and normal architecture of lymphoid organs. Five of 28 Iμ-Bcl6 mice (17.9%) became sick starting at ∼12 months of age. Historically, median survival in these mice has not been reached and ∼80% survive to 15 months. In contrast, 21 of 28 Iμ-Bcl6 Ung−/−Msh2−/−mice (75%) developed disease with an onset of ∼3 months and had a median survival of 6.2 months (p<0.0001). All 5 of the Iμ-Bcl6 mice and the majority of Iμ-Bcl6 Ung−/−Msh2−/−mice developed B cell lymphoma with splenic involvement and variable nodal involvement. Five of the Iμ-Bcl6 Ung−/−Msh2−/−mice developed other cancers (3 T cell lymphomas, 1 pre-B cell lymphoma and 1 colon adenocarcinoma). Tumors from both genotypes expressed a mature B cell phenotype (B220+ IgM+ Igκ+ CD138-) and morphology revealed loss of normal lymphoid architecture with infiltration by lymphoid blasts. Additional staining demonstrated expression of at least one GC marker (Fas, GL7 and/or PNA). Similar to Iμ-Bcl6 mice, while many of the Iμ-Bcl6 Ung−/−Msh2−/−tumors had clonal mutated Ig heavy chain gene variable regions, two of the tumors were identified as oligoclonal, suggesting a preceding lymphoproliferative stage. In the absence of Ung and Msh2, Aid-generated U-G mismatches are not recognized and are simply replicated, causing only C/G to T/A transition mutations and no strand lesions. Thus, as expected, all Ig mutations in Iμ-Bcl6 Ung−/−Msh2−/−mice were C/G to T/A transitions. Lymphomas from Iμ-Bcl6 mice have been found to harbor numerous chromosome translocations and aneuploidies. Although additional analyses are underway, spectral karyotyping of 3 Iμ-Bcl6 Ung−/−Msh2−/−tumors revealed 2 with normal cytogenetics and 1 with a 40–41,XX,t(2;17),+15,+19. Surprisingly, sequence analysis of several known Aid target genes (cMyc, Pim1, RhoH, Pax5, Cd79a, Fas, H2ax and OcaB) in tumors from 3 Iμ-Bcl6 Ung−/−Msh2−/− mice did not identify any clonal mutations. However, non-clonal C/T to T/A transition mutations in cMyc were present at a frequency of 1.2 × 10−4, suggestive of ongoing Aid activity. The presence of Aid activity but absence of off-target Aid-mediated clonal SHM suggests that either other genes are targeted by Aid or that Aid has a secondary role in lymphomagenesis such as epigenetic reprogramming, as has been shown in iPS cells. Nonetheless, the incidence of Aid-dependent lymphomagenesis in the absence of Aid-associated DNA repair is significantly increased and the latency is greatly shortened. Altogether, this data suggests that Aid-associated BER and MMR pathways afford a protective effect against the development of Aid-dependent GC B cell lymphomas such as DLBL. To investigate the role of the individual Aid-associated DNA repair pathways, we have also generated Iμ-Bcl6 Ung−/− and Iμ-Bcl6 Msh2−/− single knockout mice. These studies are ongoing but preliminary results suggest that while the effect of Ung and Msh2 deficiency on lymphomagenesis may be synergistic, Msh2 might play a more critical role in preventing Aid-mediated genomic instability. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 3917-3925 ◽  
Author(s):  
Stephen M. Jackson ◽  
Natessa Harp ◽  
Darshna Patel ◽  
Jeffrey Zhang ◽  
Savannah Willson ◽  
...  

Abstract To date, there is no consensus regarding the influence of different CD45 isoforms during peripheral B-cell development. Examining correlations between surface CD45RO expression and various physiologic processes ongoing during the germinal center (GC) reaction, we hypothesized that GC B cells, like T cells, that up-regulate surface RO should progressively acquire phenotypes commonly associated with activated, differentiating lymphocytes. GC B cells (IgD−CD38+) were subdivided into 3 surface CD45RO fractions: RO−, RO+/−, and RO+. We show here that the average number of mutations per IgVH transcript increased in direct correlation with surface RO levels. Conjunctional use of RO and CD69 further delineated low/moderately and highly mutated fractions. Activation-induced cytidine deaminase (AID) mRNA was slightly reduced among RO+ GC B cells, suggesting that higher mutation averages are unlikely due to elevated somatic mutation activity. Instead, RO+ GC B cells were negative for Annexin V, comprised mostly (93%) of CD77− centrocytes, and were enriched for CD69+ cells. Collectively, RO+ GC B cells occupy what seems to be a specialized niche comprised mostly of centrocytes that may be in transition between activation states. These findings are among the first to sort GC B cells into populations enriched for live mutated cells solely using a single extracellular marker.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 767-776 ◽  
Author(s):  
Shengli Xu ◽  
Ke Guo ◽  
Qi Zeng ◽  
Jianxin Huo ◽  
Kong-Peng Lam

Abstract MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression and are important for pre-B and follicular B lymphopoiesis as demonstrated, respectively, by mb-1-Cre– and cd19-Cre–mediated deletion of Dicer, the RNase III enzyme critical for generating mature miRNAs. To explore the role of miRNAs in B-cell terminal differentiation, we use Aicda-Cre to specifically delete Dicer in activated B cells where activation-induced cytidine deaminase is highly expressed. We demonstrate that mutant mice fail to produce high-affinity class-switched antibodies and generate memory B and long-lived plasma cells on immunization with a T cell–dependent antigen. More importantly, germinal center (GC) B-cell formation is drastically compromised in the absence of Dicer, as a result of defects in cell proliferation and survival. Dicer-deficient GC B cells express higher levels of cell cycle inhibitor genes and proapoptotic protein Bim. Ablation of Bim could partially rescue the defect in GC B-cell formation in Dicer-deficient mice. Taken together, our data suggest that Dicer and probably miRNAs are critical for GC B-cell formation during B-cell terminal differentiation.


2008 ◽  
Vol 205 (10) ◽  
pp. 2199-2206 ◽  
Author(s):  
Virginia G. de Yébenes ◽  
Laura Belver ◽  
David G. Pisano ◽  
Susana González ◽  
Aranzazu Villasante ◽  
...  

Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3′ untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.


1999 ◽  
Vol 274 (26) ◽  
pp. 18470-18476 ◽  
Author(s):  
Masamichi Muramatsu ◽  
V. S. Sankaranand ◽  
Shrikant Anant ◽  
Manabu Sugai ◽  
Kazuo Kinoshita ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2330-2330
Author(s):  
Tamar Aprahamian ◽  
ED Keniston ◽  
Jane Branca ◽  
Muneer G Hasham ◽  
Melinda Day ◽  
...  

Activation Induced Cytidine Deaminase (AICDA/AID) is a DNA-directed cytidine deaminase that is normally only expressed in activated B-cells to promote somatic hypermutations and immunoglobulin class switching. In cancer cells, AID causes significant genotoxic stress through DNA replication fork damage, creating a dependency upon the homologous recombination repair factor, RAD51, for survival. We have demonstrated anti-cancer activity through disruption of this axis in multiple preclinical lymphoid cancer models. Autoreactive B cells depend on RAD51 for survival and are chronically auto-stimulated and therefore continually re-express AID. It has been shown that ectopic expression of AID in autoreactive B-cells causes genome-wide DNA damage (similar to cancers). Given the role of autoreactive B cells and autoantibodies in autoimmune disorders, we hypothesize that immunomodulation of B cells via the RAD51/AID axis will remediate inflammatory disease processes. Our previous data suggests that RAD51 modulation enhances the CD73+ B cell population and reduces antibody diversity in T1D mice, indicating precise effects on AID-mediated antibody diversification. CYT-0853 is a novel RAD51 inhibitor that sensitizes cells to AID activity. Here, we assessed the in vivo effect of CYT-0853 on primary B cells and antibody production. Wild-type C57BL/6 mice were treated with 40mg/kg CYT-0853 or vehicle for five weeks. One-week post-treatment start, mice were immunized with DNP-KLH antigen mixed with Complete Freund's Adjuvant. A second booster with DNP-KLH antigen mixed with Incomplete Freund's Adjuvant was administered two weeks later. At termination, blood, spleen, and bone marrow was collected for analysis by flow cytometry. Surface expression of CD45, CD19, IgM, and IgG1 was assessed to determine white blood cell count, B cells, and pre- and post-class switch recombination (CSR), respectively. While no significant changes to B cell populations were observed in bone marrow or spleen, we demonstrate that CYT-0853 significantly decreases the median number of circulating CD45+ and IgG1 (post-CSR) B cells (61.8% vs. 31.6% and 8.7% vs. 4.4%, respectively). In addition, we observed a modest, significant increase in the amount of IgM+ (pre-CSR) B cells. These results were complemented by an associated overall significant decrease in circulating IgM levels. Of note, no adverse effects were observed in these mice over this treatment period. Based on these data and the role of B cells not only in antibody production, but also as antigen-presenting cells in multiple sclerosis, we tested our molecule in the myelin oligodendrocyte glycoprotein35-55-experimental autoimmune encephalomyelitis model of multiple sclerosis. Prophylactic treatment using 40mg/kg CYT-0853 did not affect disease activity or circulating cytokine production, however we observed a significant decrease in the spleen. Based on these results, further exploration is warranted to harness the power of CYT-0853 on the AID/RAD51 axis. This specific targeting may elicit beneficial therapeutic changes to B-lymphocyte populations and provide a novel immunomodulatory target to treat immunity and inflammation. Taken together, these data provide a foundation for continued preclinical development of CYT-0853 with applicability towards autoimmune diseases. Disclosures Aprahamian: Cyteir Therapeutics: Consultancy. Day:Cyteir Therapeutics: Employment. Mills:Cyteir Therapeutics: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 59-59 ◽  
Author(s):  
Maria Del Pilar Dominguez ◽  
Matt Teater ◽  
Nyasha Chambwe ◽  
David Redmond ◽  
Bao Vuong ◽  
...  

Abstract Diffuse large B-cell lymphomas (DLBCLs) are aggressive tumors that arise from germinal center B cells (GCBs) and post-GCBs and are noted for their heterogeneity and variable clinical outcomes. Epigenetic modifications like DNA methylation of cytosine nucleotides have emerged as important mechanisms of gene regulation and have been implicated in carcinogenesis. Our previous genome-wide studies in primary samples revealed profound alterations in the cytosine methylation patterning of DLBCLs. We also found that expression of activation-induced deaminase (AID) was significantly associated with the loss of methylation in DLBCL patients and was predominantly identified within computationally predicted AID-binding RGYW motifs. AID is a cytidine deaminase required for class switch recombination and somatic hypermutation (SHM) of immunoglobulin genes in GCBs. The enzymatic machinery that mediates these processes is error-prone and may introduce point-mutations and changes in DNA methylation, resulting in genomic and epigenomic instability. Since AID can also function as a demethylase during embryonic development, we asked whether AID has demethylase activity during transit of B cells through the GCs and if its overexpression can contribute to lymphomagenesis through disrupting DNA methylation. To address this question, we studied the epigenetic function of AID in GCBs and GC-derived lymphomas. We characterized the methylome of naïve B cells (NBs) and GCBs isolated from human tonsils and spleens of immunized mice by enhanced Reduced Representation Bisulfite Sequencing (eRRBS). We observed that the transition from NBs to GCBs was characterized by DNA hypomethylation, with 60,000 and 8,000 differentially methylated CpGs (DMCs) that were hypomethylated in GCBs compared to NBs, in human and mouse respectively. We also found that hypomethylated regions were enriched for the putative AID binding site RGYW (Wilcoxon P <.001). Furthermore, AID knockdown in lymphoma cells (RAMOS) resulted in preferential hypermethylation at AID-binding sites (Chi square P ~ 0). We then isolated DNA from splenic NBs and GCBs from Aicda-/- (AID-deficient) and Aicda+/+ (wild type) mice and performed eRRBS analysis, obtaining single nucleotide resolution for 2.5-3 million represented CpGs. We observed that most of the 8,000 hypoDMCs identified between GCBs and NBs in Aicda+/+ mice were absent in Aicda-/- mice (800 hypoDMCs between GCBs and NBs Aicda-/- cells), implying that AID is a regulator of DNA methylation in GCBs. In addition, those AID-dependent hypoDMCs were predominantly localized in introns (35%), and also in promoters (10%) and exons (10%). We then defined differentially methylated regions (DMRs) based on the following criteria: ≥ 5 DMCs and methylation difference ≥10%, with >250bp between DMRs. We identified DMRs that get hypomethylated in GCBs in the Aicda+/+ mice, but are not hypomethylated in Aicda-/- GCBs, corresponding to >200 genes that represent AID epigenetic targets. These genes include factors involved in B cell function and differentiation like PAX5, BCL2L1, IRF8 and others. Not unexpectedly, many of epigenetic targets are also known targets for SHM, but some are novel targets that only demonstrate evidence of epigenetic deregulation. We also analyzed the transcriptome of NBs and GCBs from Aicda-/- and Aicda+/+ mice by RNA-seq and detected an increase in DNMT1 expression in Aicda-/- cells compared to Aicda+/+ cells. There were no significant changes in expression of other factors involved in modification of cytosine methylation, such as DNMT3a/3b, TET1/2/3, UNG or MSH2/6. Finally, we performed bone marrow transplantation experiments using VavP-Bcl2 mice, which are known to develop GC-derived lymphomas. We transplanted VavP-Bcl2 bone marrow cells infected with AID-expressing retroviral vectors into C57BL/6 mice and monitored the progression of the resulting BCL2-driven lymphomas. Our preliminary results indicate that high AID expression is correlated with a more aggressive phenotype of the disease. We are currently analyzing the epigenetic targets of AID in both normal GCBs and tumors, in order to find genes that could be epigenetically deregulated and contribute to the formation of lymphomas. Our results demonstrate for the first time that AID functions as a demethylase in GCBs in vivo and suggest that the epigenetic role of AID could contribute to lymphomagenesis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document