scholarly journals Is normal hematopoiesis maintained solely by long-term multipotent stem cells?

Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4420-4424 ◽  
Author(s):  
Marina Cavazzana-Calvo ◽  
Alain Fischer ◽  
Frederic D. Bushman ◽  
Emmanuel Payen ◽  
Salima Hacein-Bey-Abina ◽  
...  

Abstract The understanding of the hierarchical organization of the human hematopoietic system is of major biologic and clinical significance. The validity of the conventional model in which hematopoiesis is solely maintained by a pool of multipotent long-term hematopoietic stem cells (LT-HSCs) has been recently challenged by several mouse studies. These new data point to the existence of a heterogeneous stem cell population that consists of distinct subsets of LT-HSCs, which include stem cells biased toward lineage-specific differentiation programs. This review attempts to discuss the balanced versus biased patterns of lineage output of human LT-HSCs gathered in 3 different gene therapy trials on the basis of vector integration site analysis by deep sequencing. The distribution of integration sites observed tends to support the validity of the revised model.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2350-2350
Author(s):  
Jun Hayakawa ◽  
Matthew Hsieh ◽  
Naoya Uchida ◽  
Kareem Washington ◽  
Oswald Phang ◽  
...  

Abstract We previously reported the efficacy of nonmyeloablative allogeneic transplantation in 2 HIV positive recipients, one of whom received retrovirus transduced hematopoietic stem cells to confer resistance to HIV (Blood. 2002; 99:698–701). Half of the donor cells were genetically modified with a Moloney murine leukemia virus (MoMLV) based HIV resistance vector containing a transdominant negative mutant Rev (TdRev) (2.58×10e8 cells) or a control vector MoMLV based vector encoding GP91phox (4.04×10e8 cells). Here we report an assessment of retroviral integration sites recovered out to 3 years post-transplantation. We identified 213 unique retroviral integration sites (RISs) from the patient’s peripheral blood samples myeloid and lymphoid cells from 1 to 36 months after reinfusion of genetically modified CD34+ cells by linear amplification-mediated PCR (LAM-PCR). While overall vector integration patterns were similar to that previously reported, only 3.75% of RISs were common among early (up to 3 months) and late samples (beyond 1 year). This low percentage of overlap offers further evidence that the early phase of hematopoiesis after transplantation derives primarily from short-term repopulating cells. Additionally, we identified 14 common integration sites (CISs). Interestingly, common integration sites were enriched among late samples; 14.9% of early RISs were CISs vs. 36.8% late. A total of 3 RISs were found near or within known oncogenes, but 2 (Integrin alpha 9 [ITGA9] and ADP-ribosylation factor-like 11 [ARL11]) were limited to early time points. An integration site near the MDS1 gene was detected in a late follow-up sample by LAM-PCR. We confirmed the integration site near the MDS1 gene by PCR with integration site-specific primers amplifying the region between the 3’-LTR of the provirus and the MDS1 locus. The MDS1 integration was not detected in early, but became detectable at all time points from 6 months to 3 years post transplant from both lymphoid and myeloid populations. Q-PCR using an integration specific Taqman probe was utilized to assess the level of clonal contribution to hematopoiesis from the clone containing the MDS1 RIS. The overall contribution of the MDS1 integrated clone remained stable during followup. Given an overall gene marking level of 0.001-0.01% with an MDS1 marking level estimated at 0.00001% in the follow up samples, the frequency of the MDS1 integrated clone is predicted to be 1/1000 marked LT-HSCs. We infused an estimated 1324 transduced LT-HSCs based upon cell dose, transduction efficiency and an estimated LT-HSC frequency of 5 per 10e3 CD34+ cells. The single integration in MDS1 in the context of non-LT-HSC limited hematopoiesis may thus account for the stability observed over time. In summary, the pattern of contribution by genetically modified cells is distinct between the early and late phase post transplantation and emphasizes the importance of long-term studies to assess the risk of integrating vectors. Additionally, the enrichment for CISs in the late phase supports the concept that integrations in the LT-HSCs favors genes that may be involved in “stemness”. Furthermore, integrations in or near putative oncogenes are likely insufficient alone as a cause of oncogenesis. Finally, LT-HSC dose may be an important determinant of the risk of integrating vectors in the context of HSC gene transfer.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3255-3255
Author(s):  
Yan Shou ◽  
John Gray ◽  
Brian A. Agricola ◽  
Zhijun Ma ◽  
Derek A. Persons ◽  
...  

Abstract Lentiviral vectors derived from the Simian Immunodeficiency Virus (SIV) mediate relatively efficient transduction of hematopoietic stem cells (HSCs) from rhesus macaques. While integration sites associated with onco-retroviral vectors have been extensively studied in primate transplantation experiments, much less in known about lentiviral vector integration site patterns. The existing literature is limited to one report showing that SIV vectors have a distinctive genomic integration pattern compared with onco-retroviral vectors (Hematti et al 2004). Here we report our results mapping 263 integration sites for SIV vectors in an autologous rhesus macaque transplantation model. Two SIV vectors were used that expressed either MGMT-P140K alone or MGMT-P140K together with HOXB4 from an internal MSCV promoter. Two rhesus macaques were transplanted with autologous CD34+ cells, half of which were transduced with the MGMT vector and half were transduced with MGMT-HOXB4 vector. The first animal was treated with 7 courses of temozolomide and 6-BG which has resulted in selection of transduced cells in vivo, both at the level of myeloid progenitors, and to a lesser degree, in HSCs. A total of 152 integration sites were identified from this animal based on LAM-PCR. Sequence analysis showed a favored preference for integration into transcription units, which comprised 70% of all integrations, with 64% integrations occurring within introns and 6% within exons. The highest density of SIV integration sites per Mbp were on chromosomes 17 and 19 (0.17 and 0.2 respectively). At different time points during drug treatment, multiple clones contributed to hematopoiesis and 24 clones were identified repetitively. The second animal was treated with two courses of TMZ/BG and two courses of BCNU/BG resulting in selection of transduced cells in all lineages. So far, a total of 111 integration sites have been identified in this animal and a similar general integration pattern was observed as seen in the first animal. Integration into transcription units was favored (71%) with 65% occurring within introns and 6% within exons. The three most gene-dense chromosomes 17, 19 and 22 had the highest density of SIV integration sites (0.11, 0.16 and 0.18 respectively). In this animal, 10 out 111 integration sites were identified repetitively during the drug treatments. Vector integrations near previously described oncogenes were identified in both animals (19 out 152 and 11 out of 111 integration sites for each animal respectively). However, no common integration sites (CIS) into a single oncogene were observed and no abnormal hematopoietic proliferation developed in either animal. Moreover, there were no integrations seen within the MDS/Evi locus that has been previously shown to be a CIS for onco-retroviral vectors. Our study shows that the SIV integration pattern is distinctly different from that obtained with murine oncoretroviral vectors and is consistent with the previous study. The lack of integrations within the MDS1/Evi locus represents a potential safety advantage, however further study will be necessary to determine whether the overall propensity for insertional mutagenesis and transformation is decreased. We also show that multiple clones contributed to hematopoiesis before and after MGMT-mediated selection suggesting that this approach is not necessarily associated with restrictions in clonal numbers contributing to hematopoiesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia Izotova ◽  
Christine Rivat ◽  
Cristina Baricordi ◽  
Elena Blanco ◽  
Danilo Pellin ◽  
...  

AbstractOur mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3581-3581
Author(s):  
Claudia R Ball ◽  
Sylvia Fessler ◽  
Daniela Belle ◽  
Manfred Schmidt ◽  
Christof von Kalle ◽  
...  

Abstract Abstract 3581 Poster Board III-518 We and others have previously shown that insertional activation of cellular genes caused by integrated retroviral vectors can lead to clonal dominance and malignant transformation. Pre-transplant diagnostics of vector flanking sequences and subsequent elimination of those clones that carry potentially dangerous integration sites prior to transplantation would dramatically improve the safety of clinical gene therapy regimens. Such a strategy requires efficient transduction of few or individual stem cells, their in vitro amplification and highly sensitive integration site determination before transplantation. To define optimal time points for transduction and ascertain the transplantability of ex vivo expanded murine stem cell clones, single CD45+Lin−Rho+SP cells isolated from bone marrow of male C57BL/6J (B6J) mice were cultivated for 8-10 days in the presence of IL11, SCF and Flt3-L. 10% of the sorted cells formed clones in vitro. In 28% ± 5% of these clones, the first division occurred during the first 48 hours after sorting, another 32% ± 8% divided up to 72 hours after sorting and additional 33% ± 7% up to 96 hours after sorting. 7% ± 4% had undergone their first division at a later time point. To examine the transplantability after ex vivo expansion, individual cell clones (containing 12 to >600 cells) were transplanted together with 105 carrier cells into lethally irradiated sex-mismatched syngeneic mice. The presence of donor-derived cells in peripheral blood of 20 transplanted mice was analyzed by Y-chromosome specific PCR. 55% of the ex vivo expanded clones contributed to post-transplant hematopoiesis. 25% of these clones exhibited long-term activity for >6 months after transplantation. Interestingly, only cell clones that had undergone their first division 48-96 hours after cell sorting contributed to long-term post-transplant hematopoiesis. For transduction, individual stem cell clones were spinoculated for 60 minutes with a GFP encoding lentiviral vector (MOI 100-5000). 5 days after transduction, 50% of cells generated by each clone were harvested, lysed and analyzed by LAM-PCR and integration site sequencing. After an additional 3 days, single clones were transplanted together with 105 carrier cells into lethally irradiated congeneic B6.SJL-PtprcaPepcb/BoyJ mice. Four weeks after transplantation, in 30% of these mice ≥0.4% CD45.1+ cells derived from single cell clones were detected in the peripheral blood. In 50% of these mice, the transduced clones contributed to myelopoiesis as well as lymphopoiesis for more than 24 weeks after transplantation, demonstrating that the longterm hematopoietic stem cell potential was retained after single cell marking and expansion. These results demonstrate that single stem cell gene transfer and subsequent expansion is possible to allow integration site determination. Long-term stem cells with defined lentiviral integration sites can be selected for transplantation. In summary, we provide proof of concept that pre-transplant diagnostics of integration sites is feasible to increase the safety of gene therapy by eliminating stem cell clones from transplants that carry unwanted integration sites. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3596-3606 ◽  
Author(s):  
Troy D. Randall ◽  
Irving L. Weissman

Abstract A significant fraction of hematopoietic stem cells (HSCs) have been shown to be resistant to the effects of cytotoxic agents such as 5-fluorouracil (5-FU), which is thought to eliminate many of the rapidly dividing, more committed progenitors in the bone marrow and to provide a relatively enriched population of the most primitive hematopoietic progenitor cells. Although differences between 5-FU–enriched progenitor populations and those from normal bone marrow have been described, it remained unclear if these differences reflected characteristics of the most primitive stem cells that were revealed by 5-FU, or if there were changes in the stem-cell population itself. Here, we have examined some of the properties of the stem cells in the bone marrow before and after 5-FU treatment and have defined several activation-related changes in the stem-cell population. We found that long-term reconstituting stem cells decrease their expression of the growth factor receptor c-kit by 10-fold and increase their expression of the integrin Mac-1 (CD11b). These changes begin as early as 24 hours after 5-FU treatment and are most pronounced within 2 to 3 days. This activated phenotype of HSCs isolated from 5-FU–treated mice is similar to the phenotype of stem cells found in the fetal liver and to the phenotype of transiently repopulating progenitors in normal bone marrow. We found that cell cycle is induced concomitantly with these physical changes, and within 2 days as many as 29% of the stem-cell population is in the S/G2/M phases of the cell cycle. Furthermore, when examined at a clonal level, we found that 5-FU did not appear to eliminate many of the transient, multipotent progenitors from the bone marrow that were found to be copurified with long-term repopulating, activated stem cells. These results demonstrate the sensitivity of the hematopoietic system to changes in its homeostasis and correlate the expression of several important surface molecules with the activation state of HSCs.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3596-3606 ◽  
Author(s):  
Troy D. Randall ◽  
Irving L. Weissman

A significant fraction of hematopoietic stem cells (HSCs) have been shown to be resistant to the effects of cytotoxic agents such as 5-fluorouracil (5-FU), which is thought to eliminate many of the rapidly dividing, more committed progenitors in the bone marrow and to provide a relatively enriched population of the most primitive hematopoietic progenitor cells. Although differences between 5-FU–enriched progenitor populations and those from normal bone marrow have been described, it remained unclear if these differences reflected characteristics of the most primitive stem cells that were revealed by 5-FU, or if there were changes in the stem-cell population itself. Here, we have examined some of the properties of the stem cells in the bone marrow before and after 5-FU treatment and have defined several activation-related changes in the stem-cell population. We found that long-term reconstituting stem cells decrease their expression of the growth factor receptor c-kit by 10-fold and increase their expression of the integrin Mac-1 (CD11b). These changes begin as early as 24 hours after 5-FU treatment and are most pronounced within 2 to 3 days. This activated phenotype of HSCs isolated from 5-FU–treated mice is similar to the phenotype of stem cells found in the fetal liver and to the phenotype of transiently repopulating progenitors in normal bone marrow. We found that cell cycle is induced concomitantly with these physical changes, and within 2 days as many as 29% of the stem-cell population is in the S/G2/M phases of the cell cycle. Furthermore, when examined at a clonal level, we found that 5-FU did not appear to eliminate many of the transient, multipotent progenitors from the bone marrow that were found to be copurified with long-term repopulating, activated stem cells. These results demonstrate the sensitivity of the hematopoietic system to changes in its homeostasis and correlate the expression of several important surface molecules with the activation state of HSCs.


Sign in / Sign up

Export Citation Format

Share Document