lymphoid progenitors
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 20)

H-INDEX

43
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Michihiro Kobayashi ◽  
Haichao Wei ◽  
Takashi Yamanashi ◽  
David J Shih ◽  
Nathalia Azevedo Portilho ◽  
...  

SummaryThe stem cell theory that all blood cells are derived from hematopoietic stem cell (HSC) is a central dogma in hematology. However, various types of blood cells are already produced from hemogenic endothelial cells (HECs) before the first HSCs appear at embryonic day (E)11 in the mouse embryo. This early blood cell production from HECs, called HSC-independent hematopoiesis, includes primitive and definitive erythromyeloid progenitors that transiently support fetal blood homeostasis until HSC-derived hematopoiesis is established. Lymphoid potential has traditionally been detected in the extra-embryonic yolk sac (YS) and/or embryos before HSC emergence, but the actual presence of lymphoid progenitors at this stage remains unknown. In addition, whether HSCs in the fetal liver are the main source of innate-like B-1a cells has been controversial. Here, using complementary lineage tracing mouse models, we show that HSC-independent multipotent progenitors (MPPs) and HSC-independent adoptive B-lymphoid progenitors persist into adult life. Furthermore, HSCs minimally contribute to the peritoneal B-1a cell pool; most B-1a cells are originated directly from ECs in the YS and embryo and HSC-independent for life. Our discovery of extensive HSC-independent MPP and B-lymphoid progenitors in adults attests to the complex blood developmental dynamics through embryo to adult that underpin the immune system and challenges the paradigm of HSC theory in hematology.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1752-1752
Author(s):  
Despina Moshous ◽  
Elisa Magrin ◽  
Sarah Winter ◽  
Benjamin Fournier ◽  
Martin Castelle ◽  
...  

Abstract Severe Combined Immunodeficiencies (SCID) are defined by a complete absence of T lymphocytes in the blood and lymphoid organs, with variable defects in other WBC subsets depending on the gene defect. From a clinical perspective SCIDs are characterized by early development of life-threatening infections accounting for early death if untreated. The treatment of choice is allogeneic HSCT with very high success rates if a HLA identical sibling (MRD) or unrelated donor (MUD) is used. However, due to the scarcity of matched-related donors, SCID can benefit from haploidentical HSCT. In contrast to the continuous improvement of HLA compatible donor transplantations, no significant improvements have been obtained over the last twenty years for haploidentical HSCT. The profound immunodeficiency during the first months following haploidentical HSCT exposes patients to opportunistic viral, bacterial and fungal infections, which account for approximately 30-40% of the transplant related mortality (TRM). The rapid restoration of the T-cell compartment is the main aim of stem cell therapy in this setting. To this end we have recently set up a phase I/II clinical trial (ClinicalTrials.gov Identifier: NCT03879876) aiming to accelerate the immune reconstitution by injection of ex vivo generated Human T lymphoid progenitors (ProTcell TM) following haploidentical HSCT. T cell progenitors in this trial are generated in vitro within 7 days from mobilized peripheral blood (mPB) CD34 + hematopoietic stem and precursor cells (HSPCs) using our Notch ligand Delta-like 4 GMP culture platform so called SMART Immune's SMART101 product. This open-label, non-randomized study evaluates safety and efficacy of the SMART101 injection following CD34 + selected, haploidentical HSCT in SCID patients and is designed as a dose-escalation study comprising 6 doses of the SMART101 product obtained from the patient's haploidentical stem cell graft. The aim of this protocol is to define the highest efficacy dose without any toxicity. The conditioning regimen is based on Busulfan and Fludarabine according to IE-WP/EBMT guidelines with upfront administration of ATG to prevent graft rejection. Tight monitoring of ATG serum levels is applied in order to assure injection of SMART101 when ATG is below the lymphotoxicity threshold. Here we report the results of the first two SCID patients. P1 presented a homozygous Artemis deficiency. At diagnosis he had an ALC of 341/µl, with complete absence of T cells (CD3 + < 4/µl, CD4 + < 1/µl, CD8 + < 2/µl) and B cells (CD19 + 0/µl). NK cells were present in the normal range for age (CD16 +CD56 + 331/µl). In the absence of an HLA compatible donor, the patient`s father was chosen as haploidentical stem cell donor. P1 received upfront ATG (5 mg /kg total dose), Busulfan (AUC of 16058 microM.min) and Fludarabine (160 mg/m²). He received Defibrotide prophylaxis from D0 until D+21, as well as Ursodeoxycholic acid until D+80. The CD34 + immunoselected graft contained 1.04 x 10 8 nucleated cells/kg with 24.15 x10 6 CD34 + cells/kg and 4000 CD3 + cells/kg on D0. After ATG monitoring 0.12x10 6 Smart101 cells were administered at D+14 post- HSCT. In the follow-up P1 didn't develop any acute or chronic SAEs, no acute or chronic GVHD, and no infection. He was discharged at D+121 post HSCT. The day +100 post transplantation CD4 + cell count/microliter exceeded 10 times the CD4 + count of our historical cohort of RAG1/2 or Artemis deficient patients transplanted with haploidentical HSCT alone following the same conditioning regimen. At 6 months post HSCT this difference remains important (851 versus 300 CD4 + cells/µl); Ig replacement therapy could be stopped as early as 9 months post transplantation and vaccinations have been started. At last follow up; almost 14 months post HSCT P1 is alive and well. P2 had an undefined molecular SCID diagnosis. She has been treated with the same conditioning regimen and received the second dose of 0.2x10 6 CD7 + cells, but unfortunately died from severe VOD emphasizing the need to replace chemotherapy with less toxic myeloablative agents. The preliminary results obtained after injection of Human T lymphoid progenitors in P1 are encouraging. While deserving confirmation in larger numbers of patients they could represent an important step forward in improving the outcome of haploidentical HSCT for SCID. Disclosures Cavazzana: Smart Immune: Other: co-founder.


Cell Research ◽  
2021 ◽  
Author(s):  
Chen Liu ◽  
Yandong Gong ◽  
Han Zhang ◽  
Hua Yang ◽  
Yang Zeng ◽  
...  

AbstractWhereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA– lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2– CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.


2021 ◽  
Vol 5 (13) ◽  
pp. 2673-2686
Author(s):  
Serine Avagyan ◽  
Margaret C. Weber ◽  
Sai Ma ◽  
Meera Prasad ◽  
William P. Mannherz ◽  
...  

Abstract Germline heterozygous mutations in GATA2 are associated with a syndrome characterized by cytopenias, atypical infections, and increased risk of hematologic malignancies. Here, we generated a zebrafish mutant of gata2b that recapitulated the myelomonocytopenia and B-cell lymphopenia of GATA2 deficiency syndrome. Using single-cell assay for transposase accessible chromatin with sequencing of marrow cells, we showed that loss of gata2b led to contrasting alterations in chromosome accessibility in early myeloid and lymphoid progenitors, associated with defects in gene expression. Within the myeloid lineage in gata2b mutant zebrafish, we identified an attenuated myeloid differentiation with reduced transcriptional priming and skewing away from the monocytic program. In contrast, in early lymphoid progenitors, gata2b loss led to accumulation of B-lymphoid transcription factor accessibility coupled with increased expression of the B-cell lineage-specification program. However, gata2b mutant zebrafish had incomplete B-cell lymphopoiesis with loss of lineage-specific transcription factor accessibility in differentiating B cells, in the context of aberrantly reduced oxidative metabolic pathways. Our results establish that transcriptional events in early progenitors driven by Gata2 are required to complete normal differentiation.


Author(s):  
Ranjita Devi Moirangthem ◽  
Kuiying Ma ◽  
Sabrina Lizot ◽  
Anne Cordesse ◽  
Juliette Olivré ◽  
...  

AbstractSeveral obstacles to the production, expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy. In the context of HSCT, delayed naïve T-cell recovery contributes to poor outcomes. A novel approach to overcome the major limitations of both T-cell immunotherapy and HSCT would be to transplant human T-lymphoid progenitors (HTLPs), allowing reconstitution of a fully functional naïve T-cell pool in the patient thymus. However, it is challenging to produce HTLPs in the high numbers required to meet clinical needs. Here, we found that adding tumor necrosis factor alpha (TNFα) to a DL-4-based culture system led to the generation of a large number of nonmodified or genetically modified HTLPs possessing highly efficient in vitro and in vivo T-cell potential from either CB HSPCs or mPB HSPCs through accelerated T-cell differentiation and enhanced HTLP cell cycling and survival. This study provides a clinically suitable cell culture platform to generate high numbers of clinically potent nonmodified or genetically modified HTLPs for accelerating immune recovery after HSCT and for T-cell-based immunotherapy (including CAR T-cell therapy).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia Izotova ◽  
Christine Rivat ◽  
Cristina Baricordi ◽  
Elena Blanco ◽  
Danilo Pellin ◽  
...  

AbstractOur mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 50-50
Author(s):  
Natalia Izotova ◽  
Christine Rivat ◽  
Cristina Baricordi ◽  
Elena Blanco-Alvarez ◽  
Danilo Pellin ◽  
...  

Historically, survival and activity of individual human hematopoietic progenitor subtypes have been studied exclusively via transplantation in permissive mouse models. Despite being a relevant investigational tool, such animal models do not recapitulate the human hematopoietic milieu. Specifically, the production of human T and NK cells in these mice is severely impaired therefore, as of today, it has been impossible to measure with enough confidence the in vivo dynamics of human T/NK lymphoid progenitors. Hematopoietic stem cell gene therapy (GT) using integrating viral vectors has opened a unique opportunity to trace the fate of transplanted cells for the first time directly in vivo in humans by means of integration sites (IS) clonal tracking. Our mathematical modelling of IS data in clinical GT supported the existence of a population of long-term lymphoid progenitors (LtLP) capable of surviving independently from hematopoietic stem cells (HSC). However, to date, no experimental setting has been available to validate such statistical prediction neither in the mouse nor in humans. We here report the first formal evidence, directly in vivo in humans, that a population of bipotent lymphoid progenitors is capable of surviving and maintaining de novo T/NK production for at least 15 years after loss of transplanted HSC. In 5 SCID-X1 patients treated with gammaretroviral vector HSC-GT we observed that genetically engineered myeloid and B cells have stayed constantly below detection limits starting from 6 months after GT. On the contrary T and NK cells remained vector positive for up to 19 years (average vector copies/cell equal 2.1 and 2.3 respectively). We initially thought that such data would be consistent with permanent loss of engineered HSC and survival of vector-marked long-living circulating mature lymphocytes. However, strikingly and unexpectedly, by a comprehensive immunophenotyping of T cells overtime, we detected vector-positive short-living CD45RA+CD62L+CD95- naïve T cells (Tn) in the circulation of these patients. We first obtained functional validation of the identity of such Tn cells by IFN-y productionassays and we confirmed positive thymic activity by measurement of TREC content. High throughput sequencing of 1,193 T-cell receptor (TCR) rearrangements in FACS-sorted T cell subtypes confirmed that these engineered Tn cells had normal TCR diversity and that new rearrangements were detectable overtime. Similarly, Vbeta repertoire measured by spectratyping displayed normal profiles in all patients. These results suggested that a de novo T-cells production is maintained in these patients by a putative LtLP population in absence of supply by gene-corrected HSC. Using Tn data as surrogate markers of LtLP clonal dynamics and composition, we collected and analysed 12,756 unique IS from 5 populations including Tn cells in a window of 10.1 to 14.9 years after the observed loss of transplanted HSC. Clonal diversity was stable in all T subtypes and IS sharing across subpopulations and timepoints was high and consistent with active in vivo output by LtLP and differentiation of Tn into memory/effector T cells. Analyzing nature and recapture probability of IS we observed that IS in LtLP are significantly enriched in genes involved in lymphocyte survival/activation and we could estimate that T cell production is currently sustained by 2,092-6,056 individual engineered LtLP clones. Moreover, by studying 651 IS collected from CD3-CD56+ purified NK cells we observed that up to 41.2% of them were shared with independently analyzed Tn suggesting that the LtLP active in these patients have a dual T/NK restricted potential. Lastly, we detected and tracked overtime 52 clones bearing IS in MECOM, CCND2 and LMO2 including the IS originally associated with vector-induced leukemia in one patient. Our data show absence of any sustained clonal expansions within the engineered LtLP population for up 19 years after GT, the longest follow up available to date in clinical HSC-GT. In conclusion, our data provide the first formal evidence in vivo in human that a de novo production of genetically engineered T and NK cells can be physiologically maintained by a population of LtLP surviving up to 15 years after loss of transplanted HSC (manuscript submitted). Identification and exploitation of such human LtLP population might be crucial for the development of next generation GT and cancer immunotherapy approaches. Disclosures Baricordi: AVROBIO Inc: Current equity holder in publicly-traded company, Other: Trainee. Thrasher:Orchard Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Equity ownership; Generation bio: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Equity ownership; Rocket Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; 4Bio Capital: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-34
Author(s):  
Weili Yao ◽  
Qi Wen ◽  
Hong-Yan Zhao ◽  
Yuan-Yuan Zhang ◽  
Shuqian Tang ◽  
...  

Background Young donors are reported to be associated with better transplant outcomes than old donors in allo-HSCT, but the underlying mechanism is still uncertain. Successful allo-HSCT relies on the rapid reconstitution of donor-derived haematopoietic and immune systems in the recipient. Therefore, characterizing the differences in percentages of HSCs and progenitors and immune cell subtypes between young and old donors may help explain the disparities in transplant outcomes. In humans, HSCs give rise to multipotent progenitors (MPPs) that further segregate into either common myeloid progenitors (CMPs) or multipotent lymphoid progenitors (MLPs), which in turn segregate into either common lymphoid progenitors (CLPs) or granulocyte-macrophage progenitors (GMPs). CMPs further segregate into either megakaryocyte-erythroid progenitor (MEPs), or GMPs. However, differences in the frequencies of HSCs and their progenitors between young and old adults remain uncertain. In addition, aGVHD is generally considered to be associated with increased ratios of donor Th1/Th2, Tc1/Tc2 and M1/M2 macrophage. However, little is known about the cytokine-producing T cell subsets and macrophage subsets in BM between young and old donors. Aims To evaluate the different subsets of HSCs and their progenitors and immune cells among young (aged <30 years), middle-aged (aged 30-45 years), and old donors (aged >45 years). Moreover, to analyze the association between donor characteristics and HSC frequency. M ethods In this prospective study, a total of 60 healthy adult donors, including 20 young donors, 20 middle-aged donors, and 20 old donors were enrolled. The frequencies and ROS levels of BM HSCs(CD34+CD38−CD90+CD45RA−) and progenitors including MPPs(CD34+CD38−CD90−CD45RA−), MLPs(CD34+CD38−CD45RA+), CLPs(CD34+CD38+CD7−CD10+CD45RA+), GMPs(CD34+CD38+CD7−CD10−CD45RA+), CMPs(CD34+CD38+CD7−CD10−CD135+CD45RA+), and MEPs(CD34+CD38+CD7−CD10−CD135−CD45RA−) were quantified by flow cytometry. Furthermore, T cell and macrophage subsets were analyzed in young, middle-aged and old donors by flow cytometry. Effector T cells, naïve T cells, effector memory T cells and central memory T cells were identified as CD45RA+CCR7−, CD45RA+CCR7+, CD45RA−CCR7−, and CD45RA−CCR7+. Th1, Th2, Tc1 and Tc2 were identified as CD3+CD8−IFN-γ+, CD3+CD8−IL-4+, CD3+CD8+IFN-γ+ and CD3+CD8+IL-4+, respectively. In addition, M1 and M2 were identified as CD14+CCR2+CD68+ and CD14+CX3CR1+CD163+. Moreover, the association of donor characteristics with HSC frequency was analysed by univariate and multivariate analysis. Results To determine the differences in HSCs and progenitors in different age donors, HSCs and six subpopulations were compared among young, middle-aged and old donors. The frequencies of HSCs and myeloid progenitors, including CMPs and MEPs in CD34+ cells were significantly lower and the frequencies of lymphoid progenitors including MLPs and CLPs in CD34+ cells were higher in the BM of young donors than in that of old donors. Significantly lower levels of ROS in HSCs and progenitors were observed in young donors than in the other donors. Furthermore, to investigate the differences in the differentiation potential from HSCs to immune cells in different age donors, T cell and macrophage subsets were compared among the three donor age groups. Young donors demonstrated a lower CD4+/CD8+ T cell ratio, lower memory T cell frequency and higher naïve T cell frequency in both CD4+ cells and CD8+ cells. Importantly, BM immune cells from young donors polarized towards less pro-inflammatory T cells characterized by Th1 and Tc1, and more immune suppressor cells, such as M2, than those from old donors. As a result, young donors had lower ratios of Th1/Th2, Tc1/Tc2 and M1/M2 in BM. In addition, multivariate analysis showed that age≥37 was independently correlated with a higher HSC frequency. Conclusion BM HSCs from young donors exhibited a lower frequency, balanced myeloid-lymphoid differentiation potential, lower ROS level and produced more immune suppressors and fewer immune effector cells than those from old donors. Donor age might be a good predictor of HSC frequency. Although further validation is required, the differences in the frequency and immune differentiation potential of HSCs in BM between young and old donors may partly explain the different outcomes of allo-HSCT. Disclosures No relevant conflicts of interest to declare.


iScience ◽  
2020 ◽  
Vol 23 (11) ◽  
pp. 101654
Author(s):  
Kazuhito Gotoh ◽  
Yuya Kunisaki ◽  
Soichi Mizuguchi ◽  
Daiki Setoyama ◽  
Kentaro Hosokawa ◽  
...  

2020 ◽  
Vol 204 (9) ◽  
pp. 2447-2454 ◽  
Author(s):  
Xinyan Lu ◽  
Yuanlin Zhang ◽  
Feng Liu ◽  
Lu Wang

Sign in / Sign up

Export Citation Format

Share Document