scholarly journals Dependence on Schwann Cell-Derived Laminin-γ1 Differentiates Early Lymphoid and Myeloid Development

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-37
Author(s):  
Kristin Komnick ◽  
Jennifer May ◽  
Pouneh Kermani ◽  
Sreemanti Basu ◽  
Irene Hernandez ◽  
...  

Blood cell production is regulated by peripheral nerve fibers that innervate the bone marrow. However, little is known about the development or maintenance of hematopoietic innervation. Schwann cells (SCs) are the primary axon 'support cells' of the peripheral nervous system (PNS), and abnormal SC development is sufficient to impair peripheral nerve function. SCs are also the primary repair cell for the PNS which makes them an attractive therapeutic target for normalization of drug or malignancy-induced 'hematopoietic neuropathy'. We hypothesized that neural regulation of hematopoiesis is dependent on SC development. To test this hypothesis, we used the Myelin Protein Zero-Cre (MP0-Cre); Lamc1fl/fl mouse line in which laminin-γ1 expression is deleted from SC precursors and their progeny1. Early SC maturation is dependent on autocrine SC precursor-derived molecules such as laminin-γ1. SC differentiation arrests prior to axon sorting and ensheathment in MP0-Cre; Lamc1fl/fl mice, and causes a global peripheral neuropathy that persists throughout the lifetime of the animal. Preliminary hematopoietic analysis of 'steady state' MP0-Cre; Lamc1fl/fl and littermate control mice has shown the following: (1) MP0-Cre; Lamc1fl/fl bone marrow is innervated, and Cre-mediated gene recombination occurs in cells immunophenotypically consistent with SCs throughout the peripheral nervous system, including those in the bone marrow; (2) MP0-Cre; Lamc1fl/fl mice are lymphopenic but not neutropenic; (3) MP0-Cre; Lamc1fl/fl mice have significantly reduced spleen size and cellularity; and (4) MP0-Cre; Lamc1fl/fl bone marrow has an ~50% reduction in Lin-Sca-1+Kit+(LSK) cells (measured as a percentage of the Lin- compartment of the bone marrow). These results are consistent with earlier work by our groups in which we found that global Lamc1 gene deletion in adult mice induced peripheral blood lymphopenia, reduced spleen size, and a niche-dependent reduction of lymphoid progenitor and precursor cells that was secondary to increased lymphoid precursor cell apoptosis and reduced proliferation (UBC-CreERT2; Lamc1fl/fl mouse line). As with the SC-specific laminin-γ1 deficient mice, myelopoiesis was preserved in the UBC-CreERT2; Lamc1fl/fl mice. Based on results from MP0-Cre; Lamc1fl/fl and UBC-CreERT2; Lamc1fl/fl mice, we conclude that early lymphoid but not myeloid development requires laminin-γ1 expression by MP0-Cre-targetted niche cells, i.e. Schwann Cells. Our results are consistent with reports from other labs that hematopoietic sympathetic neuropathy promotes aberrant myeloid expansion at the expense of lymphopoiesis2. Going forward, we will determine whether lymphopoietic development is dependent on global versus laminin-specific SC-derived cues, and whether these signals are transmitted directly between SCs and lymphoid biased HSPCs or indirectly via other components of the hematopoietic niche. We anticipate that this line of investigation will provide molecular insights and pharmacologic targets for prevention and or normalization of the 'hematopoietic neuropathy' induced by diabetes, aging, neurotoxic chemotherapies and myeloid malignancies. REFERENCES: 1 Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S. & Chen, Z. L. Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci25, 4463-4472, doi:10.1523/JNEUROSCI.5032-04.2005 (2005). 2 Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med24, 782-791, doi:10.1038/s41591-018-0030-x (2018). Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ella Ittner ◽  
Anna C. Hartwig ◽  
Olga Elsesser ◽  
Hannah M. Wüst ◽  
Franziska Fröb ◽  
...  

AbstractThe three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins—in stark contrast to their action in oligodendrocytes—promote differentiation and myelination in Schwann cells.


2007 ◽  
Vol 177 (6) ◽  
pp. 1051-1061 ◽  
Author(s):  
Yves Benninger ◽  
Tina Thurnherr ◽  
Jorge A. Pereira ◽  
Sven Krause ◽  
Xunwei Wu ◽  
...  

During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific conditional gene targeting to show that members of the Rho GTPases, cdc42 and rac1, have different and essential roles in axon sorting by Schwann cells. Our results indicate that although cdc42 is required for normal Schwann cell proliferation, rac1 regulates Schwann cell process extension and stabilization, allowing efficient radial sorting of axon bundles.


2007 ◽  
Vol 178 (5) ◽  
pp. 861-874 ◽  
Author(s):  
Patrice Maurel ◽  
Steven Einheber ◽  
Jolanta Galinska ◽  
Pratik Thaker ◽  
Isabel Lam ◽  
...  

Axon–glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo–glial interactions along the internode.


2018 ◽  
Vol 46 (6) ◽  
pp. 2358-2372 ◽  
Author(s):  
Binbin Deng ◽  
Wenjing Lv ◽  
Weisong Duan ◽  
Yakun Liu ◽  
Zhongyao Li ◽  
...  

Background: Myelination, degeneration and regeneration are implicated in crucial responses to injury in the peripheral nervous system. Considering the progression of amyotrophic lateral sclerosis (ALS), we used the superoxide dismutase 1 (SOD1)-G93A transgenic mouse model of ALS to investigate the effects of mutant SOD1 on the peripheral nerves. Methods: Changes in peripheral nerve morphology were analyzed in SOD1 mutant mice at various stages of the disease by toluidine blue staining and electron microscopy (EM). Schwann cell proliferation and recruitment of inflammatory factors were detected by immunofluorescence staining and quantitative reverse transcription PCR and were compared between SOD1 mutant mice and control mice. Furthermore, western blotting (WB) and TUNEL staining were used to investigate axonal damage and Schwann cell survival in the sciatic nerves of mice in both groups. Results: An analysis of the peripheral nervous system in SOD1-G93A mice revealed the following novel features: (i) Schwann cells and axons in mutant mice underwent changes that were similar to those seen in the control mice during the early development of peripheral nerves. (ii) The peripheral nerves of SOD1-G93A mice developed progressive neuropathy, which presented as defects in axons and myelin, leading to difficulty in walking and reduced locomotor capacity at a late stage of the disease. (iii) Macrophages were recruited and accumulated, and nerve injury and a deficit in the blood-nerve barrier were observed. (iv) Proliferation and the inflammatory micro-environment were inhibited, which impaired the regeneration and remyelination of axons after crush injury in the SOD1-G93A mice. Conclusions: The mutant human SOD1 protein induced axonal and myelin degeneration during the progression of ALS and participated in axon remyelination and regeneration in response to injury.


2018 ◽  
Vol 130 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Joey Grochmal ◽  
Wulin Teo ◽  
Hardeep Gambhir ◽  
Ranjan Kumar ◽  
Jo Anne Stratton ◽  
...  

OBJECTIVEIntravital spectral imaging of the large, deeply situated nerves in the rat peripheral nervous system (PNS) has not been well described. Here, the authors have developed a highly stable platform for performing imaging of the tibial nerve in live rodents, thus allowing the capture of high-resolution, high-magnification spectral images requiring long acquisition times. By further exploiting the qualities of the topically applied myelin dye Nile red, this technique is capable of visualizing the detailed microenvironment of peripheral nerve demyelination injury and recovery, while allowing us to obtain images of exogenous Schwann cell myelination in a living animal.METHODSThe authors caused doxorubicin-induced focal demyelination in the tibial nerves of 25 Thy-1 GFP rats, of which 2 subsets (n = 10 each) received either BFP-labeled SKP-SCs or SCs to the zone of injury. Prior to acquiring images of myelin recovery in these nerves, a tibial nerve window was constructed using a silicone hemitube, a fast drying silicone polymer, and a small coverslip. This construct was then affixed to a 3D-printed nerve stage, which in turn was affixed to an external fixation/microscope stage device. Myelin visualization was facilitated by the topical application of Nile red.RESULTSThe authors reliably demonstrated intravital peripheral nerve myelin imaging with micron-level resolution and magnification, and minimal movement artifact. The detailed microenvironment of nerve remyelination can be vividly observed, while exogenously applied Schwann cells and skin-derived precursor Schwann cells can be seen myelinating axons.CONCLUSIONSTopically applied Nile red enables intravital study of myelin in the living rat PNS. Furthermore, the use of a tibial nerve window facilitates stable intravital peripheral nerve imaging, making possible high-definition spectral imaging with long acquisition times.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1887
Author(s):  
Gabriela Sardella-Silva ◽  
Bruno Siqueira Mietto ◽  
Victor Túlio Ribeiro-Resende

Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.


2021 ◽  
Vol 23 (Supplement_4) ◽  
pp. iv7-iv8
Author(s):  
Marie Srotyr ◽  
Liyam Laraba ◽  
Glenn M Harper ◽  
Charlotte Lespade ◽  
Evyn Woodhouse ◽  
...  

Abstract Aims Our lab is interested in signals that trigger schwannoma tumour formation and we have previously shown that peripheral nerve injury triggers tumour formation in nerves with Schwann cell-specific loss of the Merlin (NF2) tumour suppressor. The Ras/Raf/MAPK/ERK pathway activity in myelinating Schwann cells is involved in nerve regeneration, causing demyelination and recruitment of inflammatory cells in areas of nerve damage, as well as dedifferentiation of myelinating Schwann cells into a repair-competent state. We have used a mouse model expressing a tamoxifen-inducible Raf-Kinase estrogen receptor fusion protein (Raf-TR) in myelinating Schwann cells of the PNS in either a control wild-type Merlin or Merlin-null background. This allows us to determine the effects of an injury-like signal in Schwann cells and its role in generating schwannoma tumour development. We present here a detailed analysis of the proliferation of Schwann cells within the nerve and morphological changes in PNS structure following Raf-TR activation. Method The P0-promotor driving the Raf-TR transgene is active in myelinating Schwann cells but inactive in the non-myelinating population, allowing specific targeting of the myelinating Schwann cell population. In addition to the Raf-TR gene, the mice exhibit a separate P0-promotor controlled Cre floxed NF2 gene which undergoes Cre-mediated recombinase at embryonic day 13.5 causing NF2 knockout in all developing Schwann cells. Mice aged between 4-6 weeks received intraperitoneal injections of either 2mg Tamoxifen or oil vehicle for 5 consecutive days and were then studied at either 10 or 21 days post-first injection. The peripheral nervous system of the mice was studied with fluorescent immuno-histochemistry staining, semithin sections and transmission electron microscopy (TEM) on sciatic nerves and dorsal root ganglia (DRG). Results Activation of the Ras/Raf/MAPK/ERK pathway in NF2 null Schwann cells led to higher rates of proliferation within sciatic nerves at 10d post-tamoxifen injections. At both 10d and 21d Raf-TR+ NF2-null mice sciatic nerve fascicles were visibly larger with significantly more cell bodies present than controls, however at 21d the rate of proliferation had reduced. In the DRG, proliferation was higher in Raf-TR+ NF2-null mice compared to controls, with proliferation remaining high at 21 days. Quantitative imaging of peripheral nerve semi-thins analysed to date showed no significant difference in the number of myelin rings present in the fascicles between different genotypes. Additionally, dual immuno-histochemistry staining with Myelin Basic Protein and EdU, markers for myelin and proliferation respectively, appeared to show proliferation in the non-myelinating Schwann cell population. Results from staining with other cell markers will also be presented, as well as a detailed analysis of nerve structure using TEM. Conclusion While developmental myelination of Merlin-null Schwann cells appears largely normal, the reaction of Merlin-null Schwann cells in the nerve to an injury signal (activation of the Raf-TR) is remarkably different from those of control nerves. The high levels of proliferation in Merlin-null Schwann cells may be indicative of a higher tumorigenesis potential. While the proliferation of Merlin-null cells does reduce over time in the sciatic nerve, further experiments are now testing whether there may be ongoing tumour growth at other locations in the nervous system that are associated with NF2 tumours in human patients.


2020 ◽  
Vol 48 (16) ◽  
pp. 8959-8976 ◽  
Author(s):  
Hannah M Wüst ◽  
Amélie Wegener ◽  
Franziska Fröb ◽  
Anna C Hartwig ◽  
Florian Wegwitz ◽  
...  

Abstract Schwann cells are the nerve ensheathing cells of the peripheral nervous system. Absence, loss and malfunction of Schwann cells or their myelin sheaths lead to peripheral neuropathies such as Charcot-Marie-Tooth disease in humans. During Schwann cell development and myelination chromatin is dramatically modified. However, impact and functional relevance of these modifications are poorly understood. Here, we analyzed histone H2B monoubiquitination as one such chromatin modification by conditionally deleting the Rnf40 subunit of the responsible E3 ligase in mice. Rnf40-deficient Schwann cells were arrested immediately before myelination or generated abnormally thin, unstable myelin, resulting in a peripheral neuropathy characterized by hypomyelination and progressive axonal degeneration. By combining sequencing techniques with functional studies we show that H2B monoubiquitination does not influence global gene expression patterns, but instead ensures selective high expression of myelin and lipid biosynthesis genes and proper repression of immaturity genes. This requires the specific recruitment of the Rnf40-containing E3 ligase by Egr2, the central transcriptional regulator of peripheral myelination, to its target genes. Our study identifies histone ubiquitination as essential for Schwann cell myelination and unravels new disease-relevant links between chromatin modifications and transcription factors in the underlying regulatory network.


Sign in / Sign up

Export Citation Format

Share Document