malignant progression
Recently Published Documents


TOTAL DOCUMENTS

1094
(FIVE YEARS 410)

H-INDEX

70
(FIVE YEARS 13)

Neoplasia ◽  
2022 ◽  
Vol 24 (2) ◽  
pp. 86-97
Author(s):  
Xiaoying Wang ◽  
Lengyun Wei ◽  
Jian Xiao ◽  
Kai Shan ◽  
Qingwen He ◽  
...  

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziwen Pan ◽  
Rongrong Zhao ◽  
Boyan Li ◽  
Yanhua Qi ◽  
Wei Qiu ◽  
...  

Abstract Background Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. Methods CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. Results We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. Conclusions This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yao Lu ◽  
Deng Huang ◽  
Baolin Wang ◽  
Bowen Zheng ◽  
Jialong Liu ◽  
...  

Hepatocellular carcinoma (HCC) is characterized by a high incidence of metastasis. The dynamic remodeling of the actin cytoskeleton plays an important role in the invasion and migration of HCC cells. In previous studies, we found that CAPZA1, a capping protein, can promote EMT of HCC cells by regulating the remodeling of the actin filament (F-actin) cytoskeleton, thus promoting the invasion and migration of HCC cells. In this study, we found that FAM21C may have a regulatory effect on CAPZA1, and we conducted an in-depth study on its potential regulatory mechanism. First, we found that FAM21C is highly expressed in HCC tissues and its high expression could promote the malignant progression of HCC. Meanwhile, the high expression of FAM21C promoted the invasion and migration of HCC cells in vitro and in vivo. Further, FAM21C interacted with CAPZA1, and their binding inhibited the capping capacity of CAPZA1, thus promoting the invasion and migration of HCC cells. This effect of FAM21C was abolished by mutating the CP-interacting (CPI) domain, the CAPZA1 binding site on FAM21C. In conclusion, high expression of FAM21C in HCC tissues can promote malignant progression of HCC and its potential mechanism involves FAM21C inhibition of CAPZA1 capping capacity by binding to CAPZA1, which drives F-actin cytoskeleton remodeling, and thus promotes invasion and migration of HCC cells.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Daren Liu ◽  
Yun Jin ◽  
Jinhong Wu ◽  
Huanbing Zhu ◽  
Dan Ye

AbstractKLF4 is implicated in tumor progression of pancreatic cancer, but the molecular regulatory mechanism of KLF4 needs to be further specified. We aimed to probe molecular regulatory mechanism of KLF4 in malignant progression of pancreatic cancer. qRT-PCR or western blot was completed to test levels of predicted genes. Dual-luciferase and chromatin immunoprecipitation (ChIP) assays were designed to validate binding between genes. Cell viability and oncogenicity detection were used for in vitro and vivo functional assessment. KLF4 was a downstream target of miR-135b-5p. KLF4 could regulate GPRC5A level. MiR-135b-5p was notably increased in cancer cells, and overexpressing KLF4 functioned a tumor repressive role, which could be restored by miR-135b-5p. Besides, cell malignant phenotypes could be inhibited through reducing miR-135b-5p level, but they were restored by GPRC5A. Our results stressed that KLF4, as a vital target of miR-135b-5p, could influence promoter region of GPRC5A, thus affecting the malignant progression of pancreatic cancer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiao Cui ◽  
Ying Yang ◽  
Aihui Yan

Background: MiR-654-3p can repress malignant progression of cancer cells, whereas no relative reports were about its modulatory mechanism in sinonasal squamous cell carcinoma (SNSCC). This research committed to approaching modulatory effect of miR-654-3p on SNSCC cells.Methods: Bioinformatics methods were utilized for analyzing interaction of miR-654-3p/cAMP-responsive element binding protein 1 (CREB1)/presenilin-1 (PSEN1). Expression levels of miR-654-3p, CREB1, and PSEN1 mRNA were assessed by quantitative real-time polymerase chain reaction. Western blot was completed for level assessment of CREB1, PSEN1, and epithelial–mesenchymal transition–related proteins. The targeted relationship between miR-654-3p and CREB1, or CREB1 and PSEN1 was authenticated via dual-luciferase assay and ChIP assay. A trail of experiments in vitro was used for detection of the effects of miR-654-3p/CREB1/PSEN1 axis on malignant progression of SNSCC cells.Results: CREB1 as the downstream target mRNA of miR-654-3p could activate transcription of its downstream target gene PSEN1. Besides, miR-654-3p could target CREB1 to repress PSEN1 expression, thus restraining proliferation, migration, invasion, epithelial–mesenchymal transition, and hastening apoptosis of SNSCC cells.Conclusion: MiR-654-3p as an antitumor gene targeted CREB1 to hamper malignant progression of SNSCC through miR-654-3p/CREB1/PSEN1 axis.


Author(s):  
Jun Wang ◽  
Juan Li ◽  
Peng Duan ◽  
Yanwei Dang ◽  
Tao Shi

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xianghua Dong ◽  
Ying Wang ◽  
Yan Qu ◽  
Junru Liu ◽  
Xien Feng ◽  
...  

Background. Although studies manifested that microRNA-603 plays a vital role in many cancers, the modulatory mechanism of microRNA-603 in cutaneous melanoma remains unknown. We aimed to investigate the roles of microRNA-603 in cutaneous melanoma cells. Methods. First, microRNA-603 expression in cutaneous melanoma cell lines was detected by qRT-PCR. The mRNA and protein expression levels of TBX5 in cutaneous melanoma cell lines were tested by qRT-PCR and western blot, respectively. In addition, the interaction between microRNA-603 and TBX5 was determined by dual-luciferase reporter gene assay, and their impacts on the growth of cutaneous melanoma cells were detected by cellular function experiments such as MTT, colony formation, and Transwell assays. Results. The expression level of microRNA-603 in human cutaneous melanoma cells was relatively upregulated. Overexpressing microRNA-603 could promote progression of cutaneous melanoma cells, while silencing microRNA-603 expression could suppress the malignant progression of cutaneous melanoma. In addition, TBX5 was lowly expressed in cutaneous melanoma cells. As confirmed by dual-luciferase assay, microRNA-603 could specifically bind to 3 ′ UTR of TBX5 and regulate TBX5. The results of the rescue experiment demonstrated that inhibiting microRNA-603 expression could suppress the proliferation, migration, and invasion of cutaneous melanoma cells, but its suppressive effect could be restored by TBX5. Conclusion. MicroRNA-603 could regulate the expression of TBX5, thus promoting the malignant progression of cutaneous melanoma cells.


Sign in / Sign up

Export Citation Format

Share Document