scholarly journals Disrupting the Reverse Warburg Effect As a Therapeutic Strategy in Multiple Myeloma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2649-2649
Author(s):  
Laura A Evans ◽  
Emilie I Anderson ◽  
Xuan-Mai Petterson ◽  
Shaji Kumar ◽  
Wilson I Gonsalves

Abstract Introduction: Altered cellular metabolism is a hallmark of every cancer cell. Aerobic glycolysis ("The Warburg Effect") is one of the earliest recognized metabolic abnormalities in cancer cells whereby extracellular glucose is preferentially metabolized and eventually processed to generate lactate and energy in the form of ATP before the former is released extracellularly, irrespective of oxygen availability. While extracellular lactate produced and released from cancer cells has traditionally been considered a waste metabolic by-product, recent understanding of cell metabolism suggests that it can also serve as a primary metabolic fuel for cancer cells via uptake by monocarboxylate transporters (MCTs). Our goal was to evaluate this "Reverse Warburg Effect" phenomenon in multiple myeloma (MM) cells and determine if it can be exploited for therapeutic purposes. Methods: All HMCLs, MM1S, RPMI-8226 and U266, were grown in RPMI-1640 cell culture medium containing 11 mM glucose and supplemented with 10% dialyzed fetal bovine serum (FBS) and 2 mM Glutamine. Primary MM cells were extracted using magnetic bead CD138 positive selection from MM patient bone marrow aspirates. For 13C-labeling experiments, HMCLs and primary MM cells were suspended in RPMI-1640 cell culture media containing 13C-labeled isotopes. Isotopomer analysis of glycolytic and tricarboxylic acid (TCA) cycle metabolites from HMCL and primary MM cell pellets was performed using Agilent Technologies 5975C gas chromatography-mass spectrometry. Small molecule inhibitors, AZD3965 and syrosingopine, were purchased from Selleck Chemicals and Sigma respectively. Cellular viability and proliferation were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrasodium bromide (MTT) and CCK-8 assays respectively. MCT-1 and MCT-4 antibodies for western blotting were utilized to evaluate their cell membrane expression on HMCLs. Results: The HMCLs, MM1S and RPMI-8226 as well as primary CD138+ cells from MM patient bone marrow were cultured in cell culture media containing physiological levels (1 mM) of U-13C-Lactate. The incorporation of extracellular 13C into the intracellular glycolytic and TCA cycle metabolite pool was observed (Fig 1) based on the expected isotopomeric patterns, demonstrating the Reverse Warburg Effect in MM cells. The relative contribution of carbon substrate by extracellular lactate compared to extracellular glucose was assessed in the following HMCLs: MM1S, RPMI-8226 and U266 cells by culturing in cell culture media containing 3-13C-Lactate and U-13C-Glucose. Extracellular lactate (yellow bar) contribution to the formation of TCA metabolites equaled that of glucose (red bar) based on the expected isotopomer patterns, suggesting the relative importance of extracellular lactate as an essential nutrient like glucose (Fig 2). Since MCT-1 and MCT-4 are key bidirectional cell membrane transporters of lactate in and out of cells, we explored the clinical significance of their gene expression level on clinical outcomes using the COMMPASS dataset provided by the Multiple Myeloma Research Foundation (MMRF). When MM patients were dichotomized at above or below the median of the expression levels of fragments per kilobase of transcript per million (FPKM), MCT-1 and MCT-4 overexpression conferred a worse progression free survival and overall survival (Fig 3). The MCT-1/MCT-4 protein expression was detectable across the various HMCLs: MM1S, U266 and RPMI-8226 (Fig 4). Inhibition of MCT-1 by specific inhibitor AZD3965 was able to reduce proliferation but not affect viability of HMCLs at 48 hours (Fig 5). However, dual inhibition of MCT-1/MCT-4 using syrosingopine was able to significantly reduce proliferation and decrease viability of HMCLs in a dose dependent fashion (Fig 6). Finally, dual inhibition of MCT-1/MCT-4 using syrosingopine reduced the utilization of extracellular lactate into the TCA cycle pool by HMCLs in media containing 3-13C-Lactate (Fig 7). Conclusion: Utilization of extracellular lactate via Reverse Warburg Effect phenomenon appears highly active in MM cells. Disrupting the utilization of extracellular lactate by dual inhibition of both MCT-1 and MCT-4 appears therapeutic. In the future, dual inhibition of MCT-1/MCT-4 in combination with other anti-MM therapies should be evaluated to determine synergistic therapeutic potential. Figure 1 Figure 1. Disclosures Kumar: Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Carsgen: Research Funding; Sanofi: Research Funding; Novartis: Research Funding; Antengene: Consultancy, Honoraria; Beigene: Consultancy; Bluebird Bio: Consultancy; Adaptive: Membership on an entity's Board of Directors or advisory committees, Research Funding; Tenebio: Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Consultancy; Astra-Zeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Research Funding; Roche-Genentech: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Aikaterini Poulaki ◽  
Theodora Katsila ◽  
Ioanna E Stergiou ◽  
Stavroula Giannouli ◽  
Jose Carlos Gόmez Tamayo ◽  
...  

Despite its major role in cellular biology, metabolism has only recently acquired a principal role in the research of the most profound cellular cycle disturbance, cancerous transformation. Myelodysplastic syndromes (MDS), a massively heterogeneous group of Hematopoietic Stem/ Progenitor Cell (HSC/HPC) disorders lie at the interface of normal differentiation and malignant transformation and have thus drew great attention due to their polymorphic presentation and elusive pathophysiology. Failure to establish a direct etiopathogenic relationship with specific genetic aberrations, along with the novel finding of a highly deregulated HIF1 activity by several unrelated research groups worldwide, including ours, urged us to investigate the metabolomic status of human bone marrow derived differentiating myeloid lineage in comparison with one another as well as with control samples. BM aspiration samples collected from 14 previously untreated MDS patients (10 patients with <5% (1 SLD, 8MLD, 1del5q, group 1- G1) and 4 with >5% BM blasts (2 EB1, 2 EB2group 2 - G2)) and 5 age matched controls. Myeloid lineage cells were isolated through ficoll bilayer protocol. All samples contained homogenous myeloid lineage subpopulations, assessedthrough optical microscopy. Two different metabolite extraction protocols were applied. The one with the best metabolites yield (50% MeOH, 30% ACN, 20% H2O) was chosen. LC-MS/MS analysis was performed using UPLC 1290 system (Agilent Technologies) coupled to a TripleTOF 5600+ mass spectrometer (SCIEX) equipped with SWATH acquisition, SelexION technology and an electrospray ionization source (ESI). A threshold of a minimum of three samples expressing a given metabolite was set against data sparsity. Data tables were scaled by data centering and setting unit variance. Log2 Foldcalculation and PLS analysis were performed for the two datasets (positive and negative ion-modes). R2 and Q2 for positive ion-mode and negative-ion mode analyses were determined. Both datasets were merged in a unique data table by taking into account maximum absolute log2 foldvalues, when a metabolite was found in both datasets. Warburg effect was evidently present in both the G1 and G2 vs control comparisons, yet the role of this stem like aerobic glycolysis seems markedly different in the two groups. While in the G2 group it serves to rescue glucose from complete burn in the mitochondrion and thus shuts it towards nucleotide synthesis (Pentose Phosphate Pathway found upregulated) with the added benefit of increased reduced Glutathione synthesis and improved redox state, in the G1 group proves detrimental. This greatly variable effect of the same phenomenon in the cellular fate lies upon the quality and functionality of the cellular mitochondrial content. G2 precursors presented functional mitochondrial (decreased NAD/NADH and FAD/FADH2) contrary to the G1 ones (Table). Failing TCA cycle, with increased NAD/NADH and FAD/FADH2 ratios and markedly increased ADP/ATP levels leads to FAs accumulation due to failure of effective adequate β oxidation. The uncontrolled increase in the NAD/NADH ratio stimulates upper glycolysis into a turbo mode further increasing the ADP/ATP, depleting cellular energy contents, engaging it to a never-ending deadly metabolism. The enormous abundance of upper glycolytic intermediates is relieved through phospholipid and ceramide synthesis, all found massively upregulated in both the MDS vs control yet also in the G1 vs G2 comparisons. FAs, mostly phospholipid and ceramide accumulation, interrupt the mitochondrial membrane lipidome further incapacitating metabolic integrity and inducing their autophagic degradation which further stimulates the Warburg effect. This type of metabolic reprogramming is eventually targeted to epigenetic modifier production, increased S-adenosyl-methionine, the major methyl group donor, 2-HydroxyGlutarate, a potent epigenetic modifier and notorious oncometabolite, Acetyl-Lysine, the major acetyl- group donor, even glutathione. We therefore present a model of an uncontrolled Warburg effect which in the G1 group confers premature death of the hematopoietic precursors, the ineffective hematopoiesis of MDS. Yet, under the pressure of the vastly upregulated epigenetic modifiers cellular fate changes, the G1 precursors adapt and transform to the G2 ones yet eventually to Acute Myeloid Leukemia blasts. Table Disclosures Vassilopoulos: Genesis pharma SA: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2520-2520
Author(s):  
Hua Wang ◽  
Veerabhadran Baladandayuthapani ◽  
Zhiqiang Wang ◽  
Jiexin Zhang ◽  
Heather Yan Lin ◽  
...  

Abstract Background Proteasome inhibitors such as bortezomib and carfilzomib are an important part of our current chemotherapeutic armamentarium against multiple myeloma, and have improved outcomes in the up-front, relapsed, and relapsed/refractory settings. Their efficacy has been demonstrated both as single agents, and as part of rationally designed combination regimens, but they are at this time used empirically, since biomarkers to identify patients who would most or least benefit from their application have not been clinically validated. Moreover, the vast majority of patients eventually develop drug-resistant disease which precludes further proteasome inhibitor use through mechanisms that have not been fully elucidated. Methods We compared gene expression profiles (GEPs) of a panel of bortezomib-resistant myeloma cell lines and their vehicle-treated, drug-naïve counterparts to identify significant changes associated with drug resistance. The list of genes whose expression was changed by at least 2-fold was compared with independent RNA interference studies whose goal was to identify genes whose suppression conferred drug resistance. Further validation of genes of interest was pursued in a panel of myeloma cell lines, and in clinically annotated GEP databases. Results Suppression of PTPROt expression was noted in bortezomib-resistant RPMI 8226 and ANBL-6 myeloma cells compared to isogenic, drug-naïve controls, and this was confirmed by quantitative PCR. Overexpression of PTRPOt in RPMI 8226, ANBL-6 and other myeloma cell lines was by itself sufficient to increase the level of apoptotic, sub-G0/G1 cells compared to vector controls, or cells expressing a phosphatase-dead PTPROt mutant. Moreover, PTPROt enhanced the ability of bortezomib to reduce myeloma cell viability, in association with increased activation of caspases 8 and 9. Exogenous over-expression of PTPROt was found to reduce the activation status of Akt, a known anti-apoptotic pathway that reduces bortezomib activity, based on Western blotting with antibodies to phospho-Akt (Ser473), and Akt kinase activity assays. Notably, we also found that exogenous over-expression of PTPROt resulted in increased expression levels of p27Kip1. Interestingly, array CGH data from studies of myeloma cell lines and primary cells showed that the PTPROt gene was located in a genomic region with a high propensity for loss. Analysis of the Total Therapy databases of GEP and patient outcomes available on the Multiple Myeloma Genomics Portal showed that higher than median expression of PTPROt was associated with better long-term survival (P=0.0175). Finally, analysis of the Millennium Pharmaceuticals database of studies of bortezomib in the relapsed and relapsed/refractory setting showed high PTRPOt expression was more frequently seen in patients who achieved complete remission (P<0.01), and was associated with a better median overall survival (P=0.0003). Conclusions Taken together, the data support the possibility that high expression of PTPROt is a good prognostic factor for response to bortezomib-containing therapies, and that this may occur through modulation by PTPROt of the Akt pathway. Moreover, they suggest that strategies to enhance the expression of PTPROt should be investigated to restore bortezomib sensitivity in patients with proteasome inhibitor-resistant disease. Disclosures: Orlowski: Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: The Takeda Oncology Company: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array Biopharma: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3199-3199 ◽  
Author(s):  
Subhashis Sarkar ◽  
Sachin Chauhan ◽  
Arwen Stikvoort ◽  
Alessandro Natoni ◽  
John Daly ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is a clonal plasma cell malignancy typically associated with the high and uniform expression of CD38 transmembrane glycoprotein. Daratumumab is a humanized IgG1κ CD38 monoclonal antibody (moAb) which has demonstrated impressive single agent activity even in relapsed refractory MM patients as well as strong synergy with other anti-MM drugs. Natural Killer (NK) cells are cytotoxic immune effector cells mediating tumour immunosurveillance in vivo. NK cells also play an important role during moAb therapy by inducing antibody dependent cellular cytotoxicity (ADCC) via their Fcγ RIII (CD16) receptor. Furthermore, 15% of the population express a naturally occurring high affinity variant of CD16 harbouring a single point polymorphism (F158V), and this variant has been linked to improved ADCC. However, the contribution of NK cells to the efficacy of Daratumumab remains debatable as clinical data clearly indicate rapid depletion of CD38high peripheral blood NK cells in patients upon Daratumumab administration. Therefore, we hypothesize that transiently expressing the CD16F158V receptor using a "safe" mRNA electroporation-based approach, on CD38low NK cells could significantly enhance therapeutic efficacy of Daratumumab in MM patients. In the present study, we investigate the optimal NK cell platform for generating CD38low CD16F158V NK cells which can be administered as an "off-the-shelf"cell therapy product to target both CD38high and CD38low expressing MM patients in combination with Daratumumab. Methods: MM cell lines (n=5) (MM.1S, RPMI-8226, JJN3, H929, and U266) and NK cells (n=3) (primary expanded, NK-92, and KHYG1) were immunophenotyped for CD38 expression. CD16F158V coding m-RNA transcripts were synthesized using in-vitro transcription (IVT). CD16F158V expression was determined by flow cytometry over a period of 120 hours (n=5). 24-hours post electroporation, CD16F158V expressing KHYG1 cells were co-cultured with MM cell lines (n=4; RPMI-8226, JJN3, H929, and U266) either alone or in combination with Daratumumab in a 14-hour assay. Daratumumab induced NK cell fratricide and cytokine production (IFN-γ and TNF-α) were investigated at an E:T ratio of 1:1 in a 14-hour assay (n=3). CD38+CD138+ primary MM cells from newly diagnosed or relapsed-refractory MM patients were isolated by positive selection (n=5), and co-cultured with mock electroporated or CD16F158V m-RNA electroporated KHYG1 cells. CD16F158V KHYG1 were also co-cultured with primary MM cells from Daratumumab relapsed-refractory (RR) patients. Results: MM cell lines were classified as CD38hi (RPMI-8226, H929), and CD38lo (JJN3, U266) based on immunophenotyping (n=4). KHYG1 NK cell line had significantly lower CD38 expression as compared to primary expanded NK cells and NK-92 cell line (Figure 1a). KHYG1 electroporated with CD16F158V m-RNA expressed CD16 over a period of 120-hours post-transfection (n=5) (Figure 1b). CD16F158V KHYG1 in-combination with Daratumumab were significantly more cytotoxic towards both CD38hi and CD38lo MM cell lines as compared to CD16F158V KHYG1 alone at multiple E:T ratios (n=4) (Figure 1c, 1d). More importantly, Daratumumab had no significant effect on the viability of CD38low CD16F158V KHYG1. Moreover, CD16F158V KHYG1 in combination with Daratumumab produced significantly higher levels of IFN-γ (p=0.01) upon co-culture with CD38hi H929 cell line as compared to co-culture with mock KHYG1 and Daratumumab. The combination of CD16F158V KHYG1 with Daratumumab was also significantly more cytotoxic to primary MM cell ex vivo as compared to mock KHYG1 with Daratumumab at E:T ratio of 0.5:1 (p=0.01), 1:1 (p=0.005), 2.5:1 (p=0.003) and 5:1 (p=0.004) (Figure 1e). Preliminary data (n=2) also suggests that CD16F158V expressing KHYG1 can eliminate 15-17% of primary MM cells from Daratumumab RR patients ex vivo. Analysis of more Daratumumab RR samples are currently ongoing. Conclusions: Our study provides the proof-of-concept for combination therapy of Daratumumab with "off-the-shelf" CD38low NK cells transiently expressing CD16F158V for treatment of MM. Notably, this approach was effective against MM cell lines even with low CD38 expression (JJN3) and primary MM cells cultured ex vivo. Moreover, the enhanced cytokine production by CD16F158V KHYG1 cells has the potential to improve immunosurveillance and stimulate adaptive immune responses in vivo. Disclosures Sarkar: Onkimmune: Research Funding. Chauhan:Onkimmune: Research Funding. Stikvoort:Onkimmune: Research Funding. Mutis:Genmab: Research Funding; OnkImmune: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; Celgene: Research Funding; Novartis: Research Funding. O'Dwyer:Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; BMS: Research Funding; Glycomimetics: Research Funding; Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 23-24
Author(s):  
Yuki Nishida ◽  
Jo Ishizawa ◽  
Edward Ayoub ◽  
Rafael Heinz Montoya ◽  
Vivian Ruvolo ◽  
...  

The tumor suppressor p53 is inactivated in virtually all cancers, including leukemias, by mutations or deletion of the TP53 gene, or overexpression of negative regulators (e.g., MDM2, MDM4, and XPO1). MDM2 and MDM4 are frequently overexpressed in acute myeloid leukemia (AML), with the highest MDM4 expression as compared to other malignancies. XPO1 transports ~300 proteins, including p53, from the nucleus to the cytoplasm and MDM2 is also a cargo protein transported by XPO1.We previously reported high synergism by MDM2 and XPO1 inhibition in AML (Kojima et al., Blood 2013), with the underlying mechanism yet to be fully investigated. Wp53 was highly accumulated in the nucleus by combined treatment in OCI-AML3 and primary AML cells with MDM2 inhibitor milademetan (DS-3032b) and XPO1 inhibitor selinexor (KPT-330), compared to treatment with individual drugs. Upon MDM2 and XPO1 inhibition, MDM2 was exclusively localized in the cytoplasm, not in the nucleus. Intriguingly, MDM4 also localized exclusively in the cytoplasm, and the dual inhibition markedly reduced the level of cytoplasmic MDM4 (Fig.1). Data suggest that the dual inhibition of MDM2 and XPO1 maximizes the transcriptional activity of p53 by sequestering MDM2 and MDM4 in the cytoplasm, with massive p53 induction in the nucleus. Indeed, the combination treatment dramatically induced p53 targets CDKN1A and MDM2 (i.e.,55-fold and 25-fold, respectively). WPathway analysis from RNA seq of OCI-AML3 cells treated with milademetan, selinexor, and the combination revealed the TP53 pathway was the top upregulated pathway compared with control, or single agent treatments. E2F targets, G2M checkpoint genes and MYC targets were the principal downregulated pathways by the combination treatment. Cell cycle analysis measuring EdU/DNA, Ki-67, p53, p21, and active caspase-3 revealed elimination of S-phase and a population with the highest Ki-67 levels at G2/M phase, with increased percentages of cells in G0 and G2/M phases. The combination treatment markedly reduced Ki-67 levels, suggesting the disruption of DNA synthesis and cell cycle arrest. Furthermore, p53 and p21 levels were increased in both G0 and G2/M cells, along with increased active caspase-3 levels, suggesting apoptosis induction in both highly proliferating and quiescent AML cells. WNext to validate c-Myc inhibition by the combination treatment, we used OCI-AML3 cells transduced with shRNA control (ShC) and shRNA for p53 (Shp53), and MOLM-13 cells with wild-type p53 (WT) and with TP53 p.R248W/R213* mutation (MT), obtained through long-term exposure to MDM2 inhibitor. c-Myc protein levels were significantly reduced in OCI-AML3 ShC cells and MOLM-13 WT cells, but not in OCI-AML3 Shp53 cells or MOLM-13 MT cells. Combined treatment synergistically reduced MYC mRNA and c-Myc protein levels both in the cytoplasm and the nucleus. Consistently, the combination treatment reduced c-Myc levels in primary AML cells with wild-type TP53 as opposed to those with TP53 mutations. Overexpression of c-Myc in OCI-AML3 cells conferred increased susceptibility to the combination treatment. Finally, c-Myc protein levels at baseline had negative correlation with the respective ED50 concentrations that induced apoptosis in 50% of AML blasts. In conclusion: we identified strikingly increased transcriptional activity of p53 which was retained in the nucleus and sequestration of MDM2 in the cytoplasm as novel mechanisms of combined MDM2/XPO1 inhibition. In addition, high c-Myc baseline levels were associated with response to the combinatorial treatment, which also markedly reduced nuclear and cytoplasmic c-Myc levels due to MYC repression by p53 activation. These findings support the translation of combined MDM2 and XPO1 inhibition into clinical trials. Disclosures Daver: Bristol-Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Research Funding; Servier: Research Funding; Genentech: Research Funding; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novimmune: Research Funding; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Trovagene: Research Funding; Fate Therapeutics: Research Funding; ImmunoGen: Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Jazz: Consultancy, Membership on an entity's Board of Directors or advisory committees; Trillium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Syndax: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; KITE: Consultancy, Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Lesegretain:Daiichi-Sankyo Inc.: Current Employment. Shacham:Karyopharm: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties: (8999996, 9079865, 9714226, PCT/US12/048319, and I574957) on hydrazide containing nuclear transport modulators and uses, and pending patents PCT/US12/048319, 499/2012, PI20102724, and 2012000928) . Andreeff:Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 917-917 ◽  
Author(s):  
Xiaohui Zhang ◽  
Jing Lu ◽  
Yimin Qian ◽  
Robert Z. Orlowski

Abstract Background: BRD4, a bromodomain and extraterminal domain (BET) family member, has an important role in modulating the expression of essential oncogenes such as c-MYC, and is emerged as a promising therapeutic target in diverse cancer types. Pharmacologic BET inhibitors in development such as JQ1 and OTX015 display preclinical anti-myeloma activity, and induce preferential loss of BRD4 bound to super-enhancers leading to transcriptional repression of c-MYC. Another approach to target this pathway is through the use of bi-functional molecules, which incorporate a small molecule BRD4 binding moiety with an E3 ubiquitin ligase recognition motif, such as ARV-825 and dBET1 (Lu et al. Chem Biol. 22:755, 2015, Winter et al. Science 348:1376, 2015). These agents induce Cereblon (CRBN)-dependent BRD4 ubiquitination and then proteasome-mediated degradation, thereby also reducing downstream c-MYC protein levels. Methods: We performed pre-clinical studies in myeloma cell lines and primary samples using ARV-825 and ARV-763, which are PROTACs that target BRD4 to either the CRBN or the Von Hippel-Lindau (VHL) E3 ligases, respectively. Downstream effects were studied using viability and apoptosis assays, cell cycle profiling, and Western blotting, among others. Results: Tetrazolium assays showed that both PROTACs were able to reduce the viability of a panel of myeloma cell lines, including MM1.S, U266, RPMI 8226, ANBL-6, KAS-6/1, and OPM-2 cells, and this occurred with greater potency than was the case for the BRD4 inhibitors JQ1 or OTX015. Median inhibitory concentrations were 5.66-91.98 nM for ARV-825, and 13.22-1522 nM for ARV-763, respectively. This reduction in viability was both time- and concentration-dependent, and was associated with a reduction of cells in the S phase, and an increase in G0/G1 cells, as well as cells with sub-G0/G1 DNA content, suggesting the onset of apoptosis. Programmed cell death was indeed found to be induced based on the appearance of an increase in Annexin V-positive cells by flow cytometry, and in cleaved caspase 8, caspase 9, caspase 3, and poly-ADP-ribose polymerase by Western blotting. The latter was associated with a specific reduction in the expression levels of both BRD4 and c-MYC that did not influence the abundance of other cellular proteins that were not BRD4 targets, and in a reduction in BRD4 and c-MYC mRNA. In contrast, JQ1 and OTX015 exposure resulted in a slight increase in BRD4 protein expression and a lesser decrease of c-MYC protein. Studies of drug combinations showed that, as expected, lenalidomide and pomalidomide were antagonistic to the effects of the CRBN-targeted ARV-825 PROTAC, but these immunomodulatory drugs showed additive or synergistic effects in combination with the VHL-targeted agent ARV-763. Also as expected, bortezomib and carfilzomib reduced the ability of both ARV-825 and ARV-763 to induce BRD4 degradation, but enhanced anti-proliferative and pro-apoptotic effects were seen in a manner that was influenced by the sequence of drug addition. In studies of drug-resistant cell lines, both PROTACs were able to overcome dexamethasone, melphalan, lenalidomide, and bortezomib resistance, but cross-resistance was seen in RPMI 8226/Dox40 cells, suggesting that these compounds are substrates for P-glycoprotein, which is over-expressed in these cells. Finally, we tested BRD4 PROTACs in primary cells isolated from patients with multiple myeloma, and observed rapid loss of viability of these plasma cells. Conclusions: Taken together, our data demonstrate that BRD4 degraders have promising activity against pre-clinical models of multiple myeloma, and support their translation to the clinic for patients with relapsed/refractory disease. Additional combination and mechanistic studies, as well as data from ongoing in vivo studies, will be presented at the meeting. Disclosures Lu: Arvinas, LLC: Employment, Equity Ownership. Qian:Arvinas, LLC: Employment, Equity Ownership. Orlowski:Acetylon: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Consultancy, Research Funding; Forma Therapeutics: Consultancy; Celgene: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Onyx Pharmaceuticals: Consultancy, Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Genentech: Consultancy; BioTheryX, Inc.: Membership on an entity's Board of Directors or advisory committees; Spectrum Pharmaceuticals: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3982-3982
Author(s):  
Lourdes Martinez-Medina ◽  
Munevver Cinar ◽  
Bassel El-Rayes ◽  
Ganji Nagaraju ◽  
Jean-Michel Gries ◽  
...  

Abstract Multiple myeloma (MM) is a heterogeneous malignant plasma cell disorder with complex molecular and genetic abnormalities. While current therapies have improved outcomes in MM, many patients relapse. Part of the development of the resistance to treatment relates to the genetic heterogeneity of tumors that allows for the development of resistant clones. Our laboratory demonstrated that MM circulating tumor DNA (ctDNA) serves as a mechanism for horizontal gene transfer between cancer cells. Using novel 3-D imaging analysis methodologies, we demonstrated that ctDNA target specifically cancer cells of similar tumor phenotype. Furthermore, using novel in vitro models and whole genome sequencing, we identify certain transposable elements (TE) responsible of allowing DNA insertion into cancer cells. Additionally, our analysis discovered a particular retro-transposon sequence unique of multiple myeloma (MM zip-code, MMZC). After chemically synthesizing the MMZC and using flow cytometry methods, we demonstrated that a MMZC was capable of targeting and internalizing within MM cells after 30 minutes of incubation when compared to a control non-carrying TE sequence. Moreover, after culturing for 24 hours, we observed an increase on the number of cells that have internalized the MMZC. To evaluate genome integration, we ligated the MMZC to a linearized CMV-GFP and a linearized CMV-mCherry fragment prior to adding to MM cell culture. Within 12 hours, live imaging showed expression of GFP and mCherry in MM cells. This results are being validated in single cell sequencing. To evaluate a potential therapeutic potential of MMZC cargo delivery, we ligated MMZC to HSV-Tk-GFP linearized vector and tested the cell specificity targeting and killing effect of MMZC-HSV-Tk-GFP in MM, Pancreatic cancer and colon cancer cell lines. MMZC-HSV-Tk-GFP did not elicit a reduction in cell viability. However, MMZC-HSV-Tk-GFP reduce MM cell viability when ganciclovir was added to the cell culture. The capacity of gene delivery has been validated in-vivo using a MM xenograft mice. PCR evaluating for MMZC-HSV-Tk-GFP after 48 hours of tail injection demonstrated that tumor, but not other organs, amplified HSV-Tk. Furthermore, tumor tissue expressed GFP. To our knowledge this is the first description of the use of humanized non-viral synthetic technology capable of delivering therapeutic cargo material into MM cell. Disclosures Martinez-Medina: Kodikaz Therapeutic Solutions: Current Employment. El-Rayes: Bayer: Research Funding; Pfizer: Research Funding; Merck: Research Funding; Novartis: Research Funding; Boston biomedical: Research Funding; Bristol Myers Squibb: Research Funding; Astra Zeneca: Consultancy, Research Funding; exelixis: Consultancy; erytotech: Research Funding; dicephera pharmaceutical: Consultancy. Gries: Kodikaz Therapeutic Solutions: Current Employment; Feldan Therapeutics: Consultancy. Bernal-Mizrachi: Winship Cancer Institute of Emory University: Current Employment; Takeda Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kodikaz Therapeutic Solutions: Consultancy, Current holder of individual stocks in a privately-held company, Patents & Royalties; Bigene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4915-4915
Author(s):  
Diana Cirstea ◽  
Teru Hideshima ◽  
Loredana Santo ◽  
Sonia Vallet ◽  
Samantha Pozzi ◽  
...  

Abstract Abstract 4915 Multiple studies have highlighted the critical role of mutation and loss of p53 function in multiple myeloma (MM) when acquiring a more aggressive phenotype and refractoriness to treatment. Therefore, agents capable of overcoming p53 mutational status are important in the context of MM therapeutics. We have previously reported the in vitro and in vivo anti-MM activity of the multi-targeted small molecule inhibitor RGB-286638. Using a human MM cell xenograft model in SCID mice we demonstrated that RGB-286638 inhibited tumor growth and prolonged survival. Our data confirmed suppression of CDK1/cyclin B, CDK4, 6/Cyclin D1, D3, and CDK2/Cyclin E complexes in MM.1S MM cells containing wt-p53, which was correlated with rapid downregulation of Rb phosphorylation, resulting in effective G2/M cell cycle blockage and increased sub-G1phase. RGB-286638 induced dose and time-dependent inhibition of RNA pol II phosphorylation as an early event promptly followed by p53 induction. Moreover, RGB-286638 treatment was associated with p53 phosphorylation at ser 15, indicative of DNA damage followed by apoptosis, evidenced by caspases 8, 9 and 3 cleavage and confirmed by Annexin V/PI staining. All together these data suggested that RGB-286638-induced RNA pol II inhibition triggers cytotoxicity in MM cells via p53-dependent apoptosis. Interestingly, RGB-286638 demonstrated cytotoxic activity even in p53-deficient conventional drug-resistant RPMI 8226/Dox 40 MM cells. RGB-286638 treatment of RPMI 8226/Dox40 MM cells showed increased PARP response associated with enhanced NAD depletion followed by increased ATP consumption. Furthermore, concomitant assessment of RGB-286638-induced ATP depletion versus cytotoxicity demonstrated more than 60% ATP loss preceded cell death in RPMI 8226/Dox40 but not in MM.1S. This data suggests the role of either p53-mediated apoptosis (when active) or PARP-induced NAD/ATP depletion and bioenergetic crisis (when absent). Interestingly, the knockdown of p53 did not rescue MM.1S cells from RGB 286638-induced death, suggesting the existence of alternative p53-independent pathways through which RGB-286638 exerts its cytotoxic activity. Ongoing studies are addressing the molecular effects of p53 silencing in MM cells. In addition, dissecting the mechanism of RGB-286638 p53-independent cytotoxicity in MM cells will provide insights for future therapeutic strategies in patients with aggressive MM and associated mutated/deleted-p53. Disclosures Loferer: GPC Biotech AG: Employment. Munshi:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis : Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Anderson:Millenium: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Raje:Celgene: Research Funding; Novartis: Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 123-123 ◽  
Author(s):  
Xing-Ding Zhang ◽  
Veerabhadran Baladandayuthapani ◽  
Heather Yan Lin ◽  
Bart Barlogie ◽  
Saad Z Usmani ◽  
...  

Abstract Background Inhibition of the ubiquitin-proteasome pathway through the use of proteasome inhibitors (PIs) has been validated by our group and others as a successful strategy against multiple myeloma that has improved patient outcomes. However, these agents are currently used without patient selection, as no biomarkers have been validated that identify patients most or least likely to benefit. Also, drug resistance emerges in the vast majority through largely undefined mechanisms, and limits the activity of further therapy based on PIs. There is therefore an urgent need to identify such biomarkers, especially if they could also represent novel therapeutic targets to achieve resensitization. Methods We compared gene expression profiles (GEPs) of a panel of bortezomib-resistant myeloma cell lines and their vehicle-treated, drug-naïve counterparts to identify significant changes associated with drug resistance. In addition, using the Lentiviral GeneNet™ small hairpin (sh) RNA Library, we performed genome-wide RNA interference (RNAi) to identify genes whose knockdown conferred resistance. Genes of interest were subjected to further validation using myeloma cell lines,primary samples, murine models, and using clinically annotated GEP databases. These studies were supported by the M. D. Anderson Cancer Center SPORE in Multiple Myeloma. Results Bortezomib resistance was associated with decreased expression of TJP1 by GEP studies of isogenic bortezomib-resistant and -sensitive cell lines. TJP1 was also identified as a chemoresistance factor by RNA interference designed to detect genes that conferred a survival advantage after drug treatment. Suppression of TJP1 using shRNAs in RPMI 8226 and U266 myeloma cell lines with high TJP1 expression reduced sensitivity to both bortezomib and carfilzomib. Conversely, its over-expression in MOLP-8 cells, which had low TJP1 levels, conferred enhanced sensitivity to both PIs. Also, forced expression of TJP1 in bortezomib-resistant RPMI 8226 cells that had lost endogenous TJP1 levels restored drug sensitivity. In these resistant cells, TJP1 promoter hypermethylation was found, and treatment with decitabine restored both TJP1 expression, and sensitivity to bortezomib or carfilzomib. GEP studies showed TJP1 suppression was associated with enhanced expression of MHC class II region genes, including PSMB8 and PSMB9. This was mirrored at the protein level by enhanced PSMB8 and PSMB9 protein by Western blotting. As a result, TJP1 suppression was associated with increased activity of the chymotrypsin-like activity of the proteasome, while TJP1 overexpression reduced proteasome activity. A link between TJP1 and PSMB8 and 9 was supported by studies showing that TJP1 influenced activity of EGFR and STAT3 and indeed, EGFR inhibition with erlotinib enhanced PI sensitivity. Consistent with a role for TJP1 in vivo, treatment of mice with bortezomib showed a greater reduction of myeloma growth in tumors with high TJP1 expression compared with isogenic lines with low TJP1 expression. Finally, analysis of the Millennium Pharmaceuticals database of bortezomib studies in the relapsed and relapsed/refractory settings showed high TJP1 expression was associated with a greater likelihood of responding to bortezomib (p<0.0002), and a longer median overall survival (OS)(p=0.008). In addition, in the Total Therapy (TT) databases, higher TJP1 expression was associated with a better progression-free and OS in both TT3a (p=0.004 and <0.0001, respectively), and TT3b (p=0.001 and <0.0001). Conclusions Taken together, these data support the hypothesis that TJP1 modulates PI sensitivity in myeloma through effects on the proteasome’s protein turnover capacity, thereby tilting the load versus capacity balance in favor of cell death. Also, they indicate that strategies targeting TJP1 signaling should be studied as approaches to overcome both primary and secondary resistance. Finally, they support the possibility that TJP1 could be a useful biomarker to identify patients who are most likely to benefit from PI-based therapies, and prospective studies to validate this further are currently underway. Disclosures: Usmani: Celgene: Consultancy, Research Funding, Speakers Bureau; Onyx: Research Funding, Speakers Bureau. Orlowski:Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Array Biopharma: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Resverlogix: Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: The Takeda Oncology Company: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Hanyin Wang ◽  
Shulan Tian ◽  
Qing Zhao ◽  
Wendy Blumenschein ◽  
Jennifer H. Yearley ◽  
...  

Introduction: Richter's syndrome (RS) represents transformation of chronic lymphocytic leukemia (CLL) into a highly aggressive lymphoma with dismal prognosis. Transcriptomic alterations have been described in CLL but most studies focused on peripheral blood samples with minimal data on RS-involved tissue. Moreover, transcriptomic features of RS have not been well defined in the era of CLL novel therapies. In this study we investigated transcriptomic profiles of CLL/RS-involved nodal tissue using samples from a clinical trial cohort of refractory CLL and RS patients treated with Pembrolizumab (NCT02332980). Methods: Nodal samples from 9 RS and 4 CLL patients in MC1485 trial cohort were reviewed and classified as previously published (Ding et al, Blood 2017). All samples were collected prior to Pembrolizumab treatment. Targeted gene expression profiling of 789 immune-related genes were performed on FFPE nodal samples using Nanostring nCounter® Analysis System (NanoString Technologies, Seattle, WA). Differential expression analysis was performed using NanoStringDiff. Genes with 2 fold-change in expression with a false-discovery rate less than 5% were considered differentially expressed. Results: The details for the therapy history of this cohort were illustrated in Figure 1a. All patients exposed to prior ibrutinib before the tissue biopsy had developed clinical progression while receiving ibrutinib. Unsupervised hierarchical clustering using the 300 most variable genes in expression revealed two clusters: C1 and C2 (Figure 1b). C1 included 4 RS and 3 CLL treated with prior chemotherapy without prior ibrutinib, and 1 RS treated with prior ibrutinib. C2 included 1 CLL and 3 RS received prior ibrutinib, and 1 RS treated with chemotherapy. The segregation of gene expression profiles in samples was largely driven by recent exposure to ibrutinib. In C1 cluster (majority had no prior ibrutinb), RS and CLL samples were clearly separated into two subgroups (Figure 1b). In C2 cluster, CLL 8 treated with ibrutinib showed more similarity in gene expression to RS, than to other CLL samples treated with chemotherapy. In comparison of C2 to C1, we identified 71 differentially expressed genes, of which 34 genes were downregulated and 37 were upregulated in C2. Among the upregulated genes in C2 (majority had prior ibrutinib) are known immune modulating genes including LILRA6, FCGR3A, IL-10, CD163, CD14, IL-2RB (figure 1c). Downregulated genes in C2 are involved in B cell activation including CD40LG, CD22, CD79A, MS4A1 (CD20), and LTB, reflecting the expected biological effect of ibrutinib in reducing B cell activation. Among the 9 RS samples, we compared gene profiles between the two groups of RS with or without prior ibrutinib therapy. 38 downregulated genes and 10 upregulated genes were found in the 4 RS treated with ibrutinib in comparison with 5 RS treated with chemotherapy. The top upregulated genes in the ibrutinib-exposed group included PTHLH, S100A8, IGSF3, TERT, and PRKCB, while the downregulated genes in these samples included MS4A1, LTB and CD38 (figure 1d). In order to delineate the differences of RS vs CLL, we compared gene expression profiles between 5 RS samples and 3 CLL samples that were treated with only chemotherapy. RS samples showed significant upregulation of 129 genes and downregulation of 7 genes. Among the most significantly upregulated genes are multiple genes involved in monocyte and myeloid lineage regulation including TNFSF13, S100A9, FCN1, LGALS2, CD14, FCGR2A, SERPINA1, and LILRB3. Conclusion: Our study indicates that ibrutinib-resistant, RS-involved tissues are characterized by downregulation of genes in B cell activation, but with PRKCB and TERT upregulation. Furthermore, RS-involved nodal tissues display the increased expression of genes involved in myeloid/monocytic regulation in comparison with CLL-involved nodal tissues. These findings implicate that differential therapies for RS and CLL patients need to be adopted based on their prior therapy and gene expression signatures. Studies using large sample size will be needed to verify this hypothesis. Figure Disclosures Zhao: Merck: Current Employment. Blumenschein:Merck: Current Employment. Yearley:Merck: Current Employment. Wang:Novartis: Research Funding; Incyte: Research Funding; Innocare: Research Funding. Parikh:Verastem Oncology: Honoraria; GlaxoSmithKline: Honoraria; Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; Ascentage Pharma: Research Funding; Genentech: Honoraria; AbbVie: Honoraria, Research Funding; Merck: Research Funding; TG Therapeutics: Research Funding; AstraZeneca: Honoraria, Research Funding; Janssen: Honoraria, Research Funding. Kenderian:Sunesis: Research Funding; MorphoSys: Research Funding; Humanigen: Consultancy, Patents & Royalties, Research Funding; Gilead: Research Funding; BMS: Research Funding; Tolero: Research Funding; Lentigen: Research Funding; Juno: Research Funding; Mettaforge: Patents & Royalties; Torque: Consultancy; Kite: Research Funding; Novartis: Patents & Royalties, Research Funding. Kay:Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding; MEI Pharma: Research Funding; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rigel: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees. Braggio:DASA: Consultancy; Bayer: Other: Stock Owner; Acerta Pharma: Research Funding. Ding:DTRM: Research Funding; Astra Zeneca: Research Funding; Abbvie: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3433-3433
Author(s):  
Caitlin Siebenaller ◽  
Madeline Waldron ◽  
Kelly Gaffney ◽  
Brian P. Hobbs ◽  
Ran Zhao ◽  
...  

Background: Younger patients (pts) with acute myeloid leukemia (AML) who enter a remission after intensive induction chemotherapy routinely receive at least one cycle of consolidation therapy with high dose cytarabine (HiDAC). This is commonly administered over a five-day inpatient stay, after which pts are discharged home as their blood counts nadir. It is thus a natural consequence of therapy that readmission for febrile neutropenia (FN) occurs, which can impact measures of quality and value in this population. Precise descriptions of incidence, type, and severity of infection, if identified, are lacking, and thus it is unknown to what standard cancer centers should be held for anticipated readmission. We measured these rates, and attempted to identify predictive factors for readmission. Methods: Adult AML pts ≥ 18 years of age who received at least one cycle of HiDAC consolidation (1000-3000 mg/m2 for six doses) in 2009-2019 were included. Our primary aim was to identify predictive factors for readmission after the first cycle of consolidation chemotherapy. The following pt characteristics and co-morbid conditions were analyzed: age, gender, body mass index (BMI), smoking status, AML cytogenetic risk status, history of diabetes, peripheral vascular disease, cardiovascular disease, chronic pulmonary disease, hepatic impairment, and other cancers. Secondary aims included: estimating rates of all-cause readmissions among all HiDAC cycles, defining the rate of FN readmissions, estimating rates of intensive care unit (ICU) admissions, clinical (e.g., probable pneumonia per imaging) and microbiologically-documented infections, prophylactic (ppx) medications used, and mortality. Statistical analyses interrogated potential risk factors for evidence of association with hospital readmission after the first cycle of consolidation chemotherapy. Results: We identified 182 AML pts who fit inclusion criteria. The median age was 50 years (range 19-73); 55% were female and 45% were male. Statistical analyses revealed no association with readmission after cycle 1 for cytogenetic risk (p=0.85), history of heart failure (p= 0.67), chronic pulmonary disease (p=1), connective tissue disease (p=0.53), cerebrovascular accident (p=0.63), diabetes (p=0.63), gender (p=0.07), history of lymphoma (p=0.53), other solid tumors (p=0.53), liver disease (p=1), myocardial infarction (p=0.71), peripheral vascular disease (p=1), or smoking status (p= 0.52). For 480 HiDAC cycles analyzed (88% at 3000 mg/m2), the overall readmission rate was 50% (242/480), of which 85% (205/242) were for FN. Those readmissions which were not FN were for cardiac complications (chest pain, EKG changes), non-neutropenic fevers or infections, neurotoxicity, bleeding or clotting events, or other symptoms associated with chemotherapy (nausea/vomiting, pain, etc.). Median time to FN hospital admission was 18 days (range 6-27) from the start of HiDAC. Of the 205 FN readmissions, 57% had documented infections. Of these infections, 41% were bacteremia, 23% fungal, 16% sepsis, 12% other bacterial, and 8% viral. Of 480 HiDAC cycles, ppx medications prescribed included: 92% fluoroquinolone (442/480), 81% anti-viral (389/480), 30 % anti-fungal (142/480), and 3% colony stimulating factor (14/480). Only 7% (14/205) of FN readmissions resulted in an ICU admission, and 1% (3/205) resulted in death. Conclusions: Approximately half of patients treated with consolidation therapy following intensive induction therapy can be expected to be readmitted to the hospital. The majority of FN readmissions were associated with clinical or microbiologically documented infections and are not avoidable, however ICU admission and death associated with these complications are rare. Readmission of AML pts following HiDAC is expected, and therefore, should be excluded from measures of value and quality. Disclosures Waldron: Amgen: Consultancy. Hobbs:Amgen: Research Funding; SimulStat Inc.: Consultancy. Advani:Macrogenics: Research Funding; Abbvie: Research Funding; Kite Pharmaceuticals: Consultancy; Pfizer: Honoraria, Research Funding; Amgen: Research Funding; Glycomimetics: Consultancy, Research Funding. Nazha:Incyte: Speakers Bureau; Abbvie: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmacutical: Research Funding; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee; Tolero, Karyopharma: Honoraria. Gerds:Imago Biosciences: Research Funding; Roche: Research Funding; Celgene Corporation: Consultancy, Research Funding; Pfizer: Consultancy; CTI Biopharma: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Sierra Oncology: Research Funding. Sekeres:Syros: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Mukherjee:Partnership for Health Analytic Research, LLC (PHAR, LLC): Consultancy; McGraw Hill Hematology Oncology Board Review: Other: Editor; Projects in Knowledge: Honoraria; Celgene Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document