Marrow-Infiltrating T Cells In Patients with Chronic Lymphocytic Leukemia Display Markers of Functional Impairment and Express PD-1

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2417-2417
Author(s):  
Ursula Hainz ◽  
Quinlan L. Sievers ◽  
Kristen Stevenson ◽  
Natalie R. Goldstein ◽  
David Dorfman ◽  
...  

Abstract Abstract 2417 Marrow is a major site of disease development and progression for chronic lymphocytic leukemia (CLL), as well as a priming site for antigen-specific T cells and a reservoir for memory T cells. To determine the extent to which T cells in the marrow microenvironment have an altered phenotype and function in CLL, we analyzed the immunophenotypic characteristics of marrow-infiltrating T cells of 18 CLL patients compared to 11 normal donors. Chemotherapy-naïve CLL patients (n=7) possessed comparable quantities of marrow T cells compared to normal donors (median CD8+ T cells/μl = CLL 904 vs normal 1247; median CD4+ T cells/μl = CLL 1975 vs normal 1110). However, we identified several aberrant characteristics among T cells infiltrating the marrow of CLL patients. First, the ratio of CD8+ to regulatory T cells (CD4+CD25+FOXP3+) was depressed (median ratio CLL 14 vs normal 41), indicating more regulatory T cells per effector T cells in CLL. Second, compared to normal marrow T cells, CLL marrow contained proportionally fewer functional effector CD8+ T cells (CD27+CD28+)(median normal 57%, CLL 48%) and more immunosenescent cells (CD27-CD28-)(median normal 21%, CLL 30%). Third, the T cell differentiation state of CLL CD8+ T cells was skewed to favor a phenotype of increased terminal differentiation (CD45RA+CCR7-)(median CLL 55% vs normal 40%), and decreased naïve (CD45RA+CCR7+) cells (median CLL 21% vs normal 31%) compared to normal donors. These differences were further accentuated in CLL samples collected within 4 months from treatment with conventional chemotherapy (n=11). Finally, by immunohistochemical staining of CLL marrow biopsies, we observed marrow-infiltrating lymphocytes to express PD-1 (mean of infiltrating T cells, untreated CLL 12%, treated CLL 35%, present even >6 months after therapy), a marker associated both with immuno-activation and inhibition. While the majority of PD-1+ CD8 T cells of normal donors (n=5) and treated CLL patients (n=4) were differentiated towards effector memory (CD45RA-CCR7-) cells (median normal 46% vs untreated CLL 16%, p=0.07; treated CLL 61%), the PD-1+ T cells from untreated CLL patients (n=5) were terminally differentiated (CD45RA+CCR7+)(median normal 23% vs untreated CLL 65%, p=0.04; treated CLL 24%). These results indicate an exhausted rather than an activated T cell phenotype in untreated patients. Paired immunophenotypic analysis on blood and marrow from the same individuals (n=9) demonstrated an increased percentage and intensity of PD-1 expression on T cells from marrow compared to blood (percentage CD8+ T cells BM vs blood p = 0.05). Interestingly, PD-1 was also detected on CLL cells (n=16) but not normal B cells (median normal 0%, vs CLL 17%, p = 0.004). The ligand for PD-1, PD-L1, was detected in the marrow vasculature by immunohistochemical staining of biopsies, suggesting that the marrow microenvironment plays a role in the induction of PD-1 associated immunosuppression. Ligation of blood PD-L1 on CLL-T cells led to a 2-fold decrease in activation (measured as CD69 expression) of CD3/CD28 stimulated patient T cells. In summary, we identify several phenotypic and functional alterations within marrow-infiltrating T cells of CLL patients. We speculate these together may contribute to impaired priming of host immunity against the tumor. The PD-1 pathway appears to be activated in CLL, especially in the setting of chemotherapeutic treatment. Since anti-PD1 antibodies are now clinically available, it may be possible to target this pathway to improve anti-tumor responses. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 963-963
Author(s):  
Marina Motta ◽  
Bobby Shelvin ◽  
Susan Lerner ◽  
Michael Keating ◽  
William G. Wierda

Abstract Patient with chronic lymphocytic leukemia (CLL) have defects in both cellular and humoral immunity. Despite reported increases in absolute T cell counts in untreated patients with CLL, abnormalities of T cell phenotype and function have been described as well as progressive hypogammaglobulinemia. Furthermore, defects are compounded by current treatments for the disease. Expansion and differentiation of normal antigen-specific T cells depends upon two signals: binding of the T cell receptor to antigen presented in the context of self MHC molecules and ligation of a costimulatory receptor. CD28 is the primary T cell surface costimulatory receptor and is constitutively expressed on almost all CD4+ and about 50% of CD8+ T cells. The ligands CD80 and CD86 bind CD28, thereby transducing the second enhancing signal for T cell proliferation and cytokine secretion. CD152 (CTLA-4) has homology to CD28 and binds to CD80 and CD86 with much higher affinity, but plays a critical role in the down regulating T cell responses and maintenance of peripheral tolerance. Surface CD152 is not normally expressed on resting T cells, but is induced upon activation. We hypothesized that in previously untreated patients with CLL, T cell anergy is the result of increased expression of CD152. Therefore, we studied the expression of surface and cytoplasmic CD152 (sCD152 and cCD152, respectively) in freshly isolated T cells from blood (N=40) and bone marrow (N=14) of previously untreated patients with CLL. Also, the activation status of these T cells was evaluated by evaluating IL-2 receptor subunit expression. CD4+ and CD8+ T cells from patients with CLL demonstrated significant increase in sCD152 and cCD152 compared to T cells from normal donors (Table 1). Table 1 Expression of CD152 by T Cells Mean % Positive T Cell Population Normal CLL P-value sCD152 N=13 N=40 CD4+ 0.8 5.0 <.01 CD4+/CD25+ 1.8 11.5 <.05 CD8+ 1.8 5.0 <.05 cCD152 N=13 N=19 CD4+ 6.9 40.4 <.01 CD4+/CD25+ 26.6 48.0 <.01 CD8+ 1.3 16.9 <.05 Furthermore, patients with CLL had an increased proportion of CD4+/CD25+/CD152+ cells. This subpopulation of T cells is known to have a regulatory function. T cells from patients with CLL (N=25) also showed an activated immunophenotype with significantly increased proportion of CD4+ and CD8+ T cells co-expressing the CD122/CD25 subunits of the IL-2 receptor compared to normal donors (N=10). No significant differences were seen in proportion or pattern of expression of these antigens between peripheral blood and bone marrow cells. These findings suggest that the T cells have been activated, however, may be primed for hyporesponsiveness and peripheral tolerance by expression of CD152. Correlations between CD152 expression and relevant clinical and biological variables were made in these previously untreated patients. The number of CD4+/CD152+ and CD4+/CD25+/CD152+ cells from patients with CLL inversely correlated with serum IgG and IgA levels. These findings suggest a further possible involvement of CD152 in the possible suppression of normal B cells in patients with CLL. The proportion of CD4+/CD25+/CD152+ cells also correlated with advanced Rai stage. In summary, T cells from patients with CLL are potentially primed for anergy by expression of CD152. Functional studies to investigate the role of CD152 and CD4+/CD25+/CD152+ cells in patients with CLL are ongoing, with the goal to develop immunotherapeutic strategies.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3117-3117
Author(s):  
Alan G. Ramsay ◽  
Lena Svensson ◽  
Nancy Hogg ◽  
John G. Gribben

Abstract We have previously demonstrated that multiple gene expression abnormalities are induced in T cells from chronic lymphocytic leukemia (CLL) patients including defects within the actin cytoskeleton signaling pathways that control immune recognition and motility (Gullu et al. JCI, 2005). T cell immune surveillance requires rapid migratory responses and LFA-1 (CD11a/CD18; αLβ2) is a promigratory receptor that engages the cytoskeleton to control migration. We hypothesized that CLL T cells may exhibit dysfunctional migration in response to ICAM-1, the principal ligand for LFA-1. Using time lapse microscopy, we observed significantly reduced chemokine SDF-1 (CXCL12) induced migration on ICAM-1 of CLL CD4 and CD8 T cells compared to age-matched healthy donor T cells. Healthy T cells tracked for 45 min displayed a random course of migration with an average speed of ~ 8 μm/min, whereas CLL T cells were slower ~ 5 μm/min (n=14, ~ 30% reduction, p&lt;0.01). We further postulated that direct contact of CLL tumor cells with healthy T cells would induce this migratory defect. Healthy CD4 or CD8 T cells were cocultured with either allogeneic CLL B cells or allogeneic healthy B cells and subsequently used in migration assays. Co-culture with CLL cells resulted in significantly reduced T cell migration compared with co-culture with healthy B cells (~ 44% reduction in migration, n=6, p&lt;0.01). Evidence that direct contact was required to induce this migratory defect was shown when no effect was observed when cell-cell adhesion was prevented by pretreatment of CLL cells with anti-ICAM-1 blocking antibody prior to primary co-culture with healthy T cells. This cancer-induced migratory defect was repaired when CLL T cells were pretreated with the immunomodulatory drug Lenalidomide (1μM for 1hr). Treatment with this agent enhanced the migratory potential of CLL T cells to a speed comparable to untreated and treated healthy T cells. The finding that lenalidomide can restore rapid migration in patient T cells provides evidence that this agent may increase immune surveillance in CLL patients.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4670-4670
Author(s):  
Chang-Qing Xia ◽  
Anna Chernatynskaya ◽  
Clive Wasserfall ◽  
Benjamin Looney ◽  
Suigui Wan ◽  
...  

Abstract Abstract 4670 Anti-thymocyte globulin (ATG) has been used in clinic for the treatment of allograft rejection and autoimmune diseases. However, its mechanism of action is not fully understood. To our knowledge, how ATG therapy affects naïve and memory T cells has not been well investigated. In this study, we have employed nonobese diabetic mouse model to investigate how administration of anti-thymocyte globulin (ATG) affects memory and naïve T cells as well as CD4+CD25+Foxp3+ regulatory T cells in peripheral blood and lymphoid organs; We also investigate how ATG therapy affects antigen-experienced T cells. Kinetic studies of peripheral blood CD4+ and CD8+ T cells post-ATG therapy shows that both populations decline to their lowest levels at day 3, while CD4+ T cells return to normal levels more rapidly than CD8+ T cells. We find that ATG therapy fails to eliminate antigen-primed T cells, which is consistent with the results that ATG therapy preferentially depletes naïve T cells relative to memory T cells. CD4+ T cell responses post-ATG therapy skew to T helper type 2 (Th2) and IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) are less sensitive to ATG depletion and remain at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory-like immunophenotype is significantly increased in ATG-treated animals, which might play an important role in controlling effector T cells post ATG therapy. In summary, ATG therapy may modulate antigen-specific immune responses through modulation of naïve and memory T cell pools and more importantly through driving T cell subsets with regulatory activities. This study provides important data for guiding ATG therapy in allogenieic hematopoietic stem cell transplantation and other immune-mediated disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
Mohammad-Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hans Wigzell ◽  
Anders Österborg ◽  
Håkan Mellstedt

Abstract T-cell receptor–B-variable (TCR-BV) gene usage and the CDR3 size distribution pattern were analyzed by reverse transcription–polymerase chain reaction (RT-PCR) in patients with B-cell chronic lymphocytic leukemia (B-CLL) to assess the T-cell repertoire. The use of TCR-BV families in CD4 and CD8 T cells stimulated with autologous activated leukemic cells was compared with that of freshly obtained blood T cells. Overexpression of individual TCR-BV families was found in freshly isolated CD4 and CD8 T cells. Polyclonal, oligoclonal, and monoclonal TCR-CDR3 patterns were seen within such overexpressed native CD4 and CD8 TCR-BV families. In nonoverexpressed TCR-BV families, monoclonal and oligoclonal populations were noted only within the CD8 subset. After in vitro stimulation of T cells with autologous leukemic B cells, analyses of the CDR3 length patterns showed that in expanded TCR-BV populations, polyclonal patterns frequently shifted toward a monoclonal/oligoclonal profile, whereas largely monoclonal patterns in native overexpressed TCR-BV subsets remained monoclonal. Seventy-five percent of CD8 expansions found in freshly obtained CD8 T cells further expanded on in vitro stimulation with autologous leukemic B cells. This suggests a memory status of such cells. In contrast, the unusually high frequency of CD4 T-cell expansions found in freshly isolated peripheral blood cells did not correlate positively to in vitro stimulation as only 1 of 9 expansions continued to expand. Our data suggest that leukemia cell–specific memory CD4 and CD8 T cells are present in vivo of patients with CLL and that several leukemia cell–associated antigens/epitopes are recognized by the patients' immune system, indicating that whole leukemia cells might be of preference for vaccine development.


Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Wendelina J. M. Mackus ◽  
Florine N. J. Frakking ◽  
Annette Grummels ◽  
Laila E. Gamadia ◽  
Godelieve J. de Bree ◽  
...  

Abstract In patients with B-cell chronic lymphocytic leukemia (B-CLL), the absolute number of T cells is increased. Although it has been suggested that these T cells might be tumor specific, concrete evidence for this hypothesis is lacking. We performed a detailed immunophenotypic analysis of the T-cell compartment in the peripheral blood of 28 patients with B-CLL (Rai 0, n = 12; Rai I-II, n = 10; Rai III-IV, n = 6) and 12 healthy age-matched controls and measured the ability of these patients to mount specific immune responses. In all Rai stages a significant increase in the absolute numbers of CD3+ cells was observed. Whereas the number of CD4+ cells was not different from controls, patients with B-CLL showed significantly increased relative and absolute numbers of CD8+ cells, which exhibited a CD45RA+CD27- cytotoxic phenotype. Analysis of specific immune responses with tetrameric cytomegalovirus (CMV)–peptide complexes showed that patients with B-CLL had significantly increased numbers of tetramer-binding CMV-specific CD8+ T cells. The rise in the total number of CD8+ cytotoxic T cells was evident only in CMV-seropositive B-CLL patients. Thus, our data suggest that in patients with B-CLL the composition of T cells is shifted toward a CD8+ cytotoxic cell type in an effort to control infections with persistent viruses such as CMV. Moreover, they offer an explanation for the high incidence of CMV reactivation in CLL patients treated with T cell–depleting agents, such as the monoclonal antibody (mAb) alemtuzumab (Campath; α-CD52 mAb). Furthermore, because in CMV-seronegative patients no increase in cytotoxic CD8+ T cells is found, our studies do not support the hypothesis that tumor-specific T cells account for T-cell expansion in B-CLL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3676-3676
Author(s):  
Yohann White ◽  
Makoto Yoshimitsu ◽  
Tomohiro Kozako ◽  
Kakushi Matsushita ◽  
Kimiharu Uozumi ◽  
...  

Abstract Abstract 3676 Poster Board III-612 Regulatory T-cells (Tregs) mediate self-tolerance and moderate the immune response to various antigens. Their frequency and suppressive function are reduced in various autoimmune diseases like type 1 diabetes mellitus, systemic lupus, and rheumatoid arthritis, but may be excessive in certain malignancies. The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus with myriad clinical manifestations, most notably adult T-cell leukemia/lymphoma (ATLL) and HTLV-1 associated myelopathy/ tropical spastic paraparesis (HAM/TSP). We have previously described the decreased frequency and function of HTLV-1 specific CD8+ T-cells in ATLL patients compared to asymptomatic carriers (ACs) and healthy controls (HCs). We have also reported the relative exhaustion of HTLV-1 specific cytotoxic T-lymphocytes (CTLs) compared to cytomegalovirus (CMV)-specific CTLs in ACs, as demonstrated by upregulation of the co-inhibitory molecule, programmed death 1 (PD-1). Recent evidence supports the existence of CD8+ Tregs in humans, defined primarily by forkhead box P3 (FOXP3) transcription factor expression. Although a classic Treg phenotypic marker, FOXP3's aberrant expression makes it a less reliable marker in the setting of ATLL. Low expression or absence of interleukin 7 receptor (IL-7R) (CD127lo/-) on CD25+ T-cells has provided a useful alternative Treg phenotype, allowing preservation of cell viability for functional assays. Existing studies have focused mostly on CD4+ Tregs and a few on CD8+ Tregs in malignancy, but little is known about their involvement in the persistence of chronic viral infections like HTLV-1. In chronic HTLV-1 infection, FOXP3+CD25+ and CD127lo/-CD25+ Tregs comprise 8.3±4.6% and 8.1±4.3% of overall CD8+ T-cells, respectively (n=14). Expression of the FOXP3+CD25+ phenotype in CD8+ T-cells had a tendency towards correlation with the CD127lo/-CD25+ phenotype (r=0.561, p=0.073, n=11). Among ACs, we observed the CD127lo/-CD25+ Treg phenotype in HTLV-1 Tax-specific CD8+ T-cells (45±16.5%, n=8), which was significantly greater than CMV-specific CD8+ Tregs (25±15.8%, n=6) (p<0.05, Figure 1), as characterized by phycoerythrin-labelled HLA-A*2402 Tax301-309 or HLA-A*0201 Tax11-19 and HLA-A*24/ HLA-A*02 CMV tetramers respectively. We have demonstrated that the CD8+CD127lo/-CD25+ phenotype could be an alternative marker of CD8+ Tregs. These observations suggest that HTLV-1 specific CD8+ Tregs could be implicated in the impaired clearance of HTLV-1 infected and transformed cells. This surrogate marker may facilitate further exploration of the immunological significance of antigen specific CD8+ Tregs in chronic viral infection. Figure 1 Increased frequency of HTLV-1 tetramer-specific CD8+CD127-/loCD25+ regulatory T-cells. A) Human PBMCs were gated on lymphocytes based on forward and side light scatter, and phycoerythrin-labelled HLA-A*2402 Tax301-309 or HLA-A*0201 Tax11-19 and HLA-A*24 CMV or HLA-A*02 CMV PP65 tetramer (Medical and Biological Laboratorie, Japan) specific CD8+ T-cells analyzed for intracellular FOXP3 and/or surface staining for CD25, CD8, GITR, and CD127 or appropriate isotype controls. The above representative data is shown after subtracting immunoglobulin isotype control background. B) Proportion of cells expressing the regulatory T-cell phenotype CD127-/lo CD25+ was higher for HTLV-1 Tax-specific CD8+ T-cells compared to CMV-specific T-cells (p<0.05) among asymptomatic carriers. Horizontal black bars represent means for the respective tetramer specific cell groups. Figure 1. Increased frequency of HTLV-1 tetramer-specific CD8+CD127-/loCD25+ regulatory T-cells. A) Human PBMCs were gated on lymphocytes based on forward and side light scatter, and phycoerythrin-labelled HLA-A*2402 Tax301-309 or HLA-A*0201 Tax11-19 and HLA-A*24 CMV or HLA-A*02 CMV PP65 tetramer (Medical and Biological Laboratorie, Japan) specific CD8+ T-cells analyzed for intracellular FOXP3 and/or surface staining for CD25, CD8, GITR, and CD127 or appropriate isotype controls. The above representative data is shown after subtracting immunoglobulin isotype control background. B) Proportion of cells expressing the regulatory T-cell phenotype CD127-/lo CD25+ was higher for HTLV-1 Tax-specific CD8+ T-cells compared to CMV-specific T-cells (p<0.05) among asymptomatic carriers. Horizontal black bars represent means for the respective tetramer specific cell groups. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2661-2661 ◽  
Author(s):  
Zhi-Zhang Yang ◽  
Tammy Price-troska ◽  
Anne J Novak ◽  
Stephen M Ansell

Abstract T-cell exhaustion plays an important role in attenuating the function of immune cells in B-cell non-Hodgkin's lymphoma (NHL) and PD-1 expression is typically used to identify exhausted T-cells. We have however previously shown that not all PD-1+ cells are exhausted and that PD-1 is differentially expressed on two distinct T-cell subpopulations, with high expression on T follicular helper cells and dim expression on exhausted T cells. Other markers are therefore needed to more clearly identify exhausted intratumoral T cells. To further define exhaustion of intratumoral T cells, we determined the co-expression, regulation and function of PD-1, TIM-3 and LAG-3 on CD4+ or CD8+ T cells by flow cytometry. Using biopsy specimens from follicular B-cell NHL, we found that the percentages of PD-1+ and TIM-3+ T cells were 53.1% (range: 17.2-81.2%, n=32) and 34.5% (range: 14.9-62.6%, n=34) in CD4+ T cells and 46.8% (range: 12.8-81.7%, n=32) and 40.4% (range: 15.0-78.4%, n=34) in CD8+ T cells, respectively. We observed that TIM-3 was predominantly expressed on PD-1dim T cells and TIM-3+ cells accounted for 40% of CD4+ PD-1dim or 45% of CD8+ PD-1dim T cells. Similarly, LAG-3 was variably expressed on intratumoral T cells from B-cell NHL. A median of 9.54% (range: 3.01-15.46, n=6) of CD4+ or 20.48% (7.93-33.9, n=8) of CD8+ T cells express LAG-3. We found that LAG-3+ T cells almost exclusively came from PD-1+ TIM-3+ cells, forming a defined population of intratumoral PD-1+ TIM-3+ LAG-3+ CD4+ or CD8+ T cells. While the majority of LAG-3+ T cells were effector memory T cells (CD45RA- CCR7-), some LAG-3-expressing T cells displayed a phenotype of terminally-differentiated T cells (CD45RA+ CCR7-). Functionally, the intratumoral TIM-3+ LAG-3+ T cells exhibited reduced capacity to produce cytokines (IL-2, IFN-γ) and granules (perforin, granzyme B). Similar to TIM-3, LAG-3 expression was strongly up-regulated on CD4+ or CD8+ T cells by IL-12, a cytokine that has been shown to induce T-cell exhaustion. Interestingly, we observed that while expression of TIM-3 on CD8+ T cells was upregulated by IL-12 at an early time point (day 1), LAG-3 was only induced after TIM-3 up-regulation (day 3) and almost exclusively on TIM-3+ T cells. Furthermore, we found that blockade of both TIM-3 and LAG-3 signaling was able to reverse the exhausted phenotype of CD8+ T cells resulting in increased IFN-γ and IL-2 production. This effect was further enhanced when CD8+ T cells were treated with both anti-TIM-3 and anti-LAG-3 Abs. Taken together, these results suggest that PD-1, TIM-3 and LAG-3 were involved in the induction of exhaustion of T cells in B-cell NHL. We find that PD-1, TIM-3 and LAG-3 are expressed on the same T cells and that blocking TIM-3 and LAG-3 can reverse T-cell exhaustion signaling. These results suggest that PD-1, TIM-3 and LAG-3 play a synergistic role in the development of T cell exhaustion in NHL. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 180 (7) ◽  
pp. 5118-5129 ◽  
Author(s):  
Sven Mostböck ◽  
M. E. Christine Lutsiak ◽  
Diane E. Milenic ◽  
Kwamena Baidoo ◽  
Jeffrey Schlom ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 61-61 ◽  
Author(s):  
Melissa D Docampo ◽  
Christoph K. Stein-Thoeringer ◽  
Amina Lazrak ◽  
Marina D Burgos da Silva ◽  
Justin Cross ◽  
...  

Abstract INTRODUCTION: The intestinal microbiota is essential for the fermentation of fibers into the short-chain fatty acids (SCFA) butyrate, acetate and propionate. SCFA can bind to G-protein-coupled receptors GPR41, GPR43 and GPR109a to activate downstream anti-inflammatory signaling pathways. In colitis or graft versus host disease (GVHD), GPR43 signaling has been reported as an important regulator of intestinal homeostasis by increasing the pool of regulatory T cells. In contrast to GPR43, which binds preferentially propionate and acetate, GPR109a is the major receptor for butyrate. We and others have demonstrated that butyrate can ameliorate gastrointestinal injury during GVHD through enterocyte protection. Therefore, we hypothesized that GPR109a plays an important role in the pathophysiology of intestinal GVHD, focusing specifically on alloreactive T cells. METHODS AND RESULTS: Using mouse models of GVHD, we examined the role of the butyrate/niacin receptor, GPR109a in allogeneic hematopoietic cell transplantation (allo-HCT). First, we studied whether a genetic knock-out (KO) of GPR109a in transplant recipient mice affected GVHD, but GPR109a-KO recipient mice did not exhibit increased mortality from GVHD compared to wild type (WT) mice. We next investigated the role of GPR109a in the donor compartment by transplanting either BM or T cells from WT or GPR109a-KO mice into major MHC mismatched BALB/c host mice. Mice transplanted with B6 BM, with T cells from a GPR109a-KO mouse into BALB/c hosts displayed a lower incidence of lethal GVHD (Fig. 1A). To determine whether the attenuation of GVHD is intrinsic to GPR109a-KO T cells, we established BM chimeras and performed a secondary transplant by transplanting B6 BM + (B6 à Ly5.1) or (GPR109a à Ly5.1) T cells into BALB/c hosts. We observed the same improvement in survival in mice that received GPR109a-KO T cells. This indicates an intrinsic role for GPR109a specifically in the donor hematopoietic compartment. Having identified a T-cell specific requirement for GPR109a we next examined expression of GPR109a on WT T cells in vitro at baseline and following stimulation with CD3/28 and found GPR109a significantly upregulated on both CD4+ and CD8+ T cells after 72 hours of stimulation (Fig 1B). At steady state in vivo, we observed the same numbers and percentages of splenic effector memory, central memory, and naïve CD4+ T cells as well as regulatory T cells in WT B6 mice and GPR109a-KO mice, suggesting normal T cell development in the knockout mice. In an in vitro mixed lymphocyte reaction (MLR), GPR109a-KO CD4+ T cells become activated, proliferate, polarize and secrete cytokine (specifically IFNg) to the same level as WT CD4+ T cells, suggesting normal functional capacity. However, after allo-HCT in mice we observed significantly fewer CD4+ and CD8+ T cells, and specifically fewer effector memory CD4+ T cells (Fig. C), in the small and large intestines of mice that received GPR109a-KO T cells at day 7 post transplant. In contrast, we found significantly more regulatory T cells in the intestines (Fig. 1D) and the spleen of GPR1091-KO T cell recipients, while numbers and percentages of polarized Th1 and Th17 T cells were similar between the two groups. We further 16S rRNA sequenced the gut microbiota of mice at day 7 after transplant and observed an increased relative abundance of bacteria from the genus Clostridium (Fig. 1D) along with an increased concentration of cecal butyrate as measured by GC-MS (Fig. 1E). In a preliminary graft versus tumor (GVT) experiment, we found that mice that received A20 tumor cells and GPR109a-KO T cells exhibited increased survival compared to mice that received A20 tumor cells and WT T cells. These preliminary findings suggest that GPR109a-KO T cells maintain their graft versus tumor response while causing less GVHD, and exclude a defective functional capacity. CONCLUSIONS: We report a novel role of the butyrate/niacin receptor GPR109a on donor T cells in allo-HCT as a genetic knock-out on T cells attenuates lethal GVHD. As these T cells are tested as functionally intact, we propose that the reduction in overall T cells of KO T cell recipients may underlie the attenuation in GVHD. Furthermore, such a reduction in allograft-induced gut injury is accompanied by maintenance of the gut commensal Clostridium and butyrate production, which is known to protect the intestinal epithelium and increases the regulatory T cell pool. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document