immune surveillance
Recently Published Documents


TOTAL DOCUMENTS

1685
(FIVE YEARS 694)

H-INDEX

99
(FIVE YEARS 18)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chongming Jiang ◽  
Evelien Schaafsma ◽  
Wei Hong ◽  
Yanding Zhao ◽  
Ken Zhu ◽  
...  

BackgroundNeoantigens are presented on the cancer cell surface by peptide-restricted human leukocyte antigen (HLA) proteins and can subsequently activate cognate T cells. It has been hypothesized that the observed somatic mutations in tumors are shaped by immunosurveillance.MethodsWe investigated all somatic mutations identified in The Cancer Genome Atlas (TCGA) Skin Cutaneous Melanoma (SKCM) samples. By applying a computational algorithm, we calculated the binding affinity of the resulting neo-peptides and their corresponding wild-type peptides with the major histocompatibility complex (MHC) Class I complex. We then examined the relationship between binding affinity alterations and mutation frequency.ResultsOur results show that neoantigens derived from recurrent mutations tend to have lower binding affinities with the MHC Class I complex compared to peptides from non-recurrent mutations. Tumor samples harboring recurrent SKCM mutations exhibited lower immune infiltration levels, indicating a relatively colder immune microenvironment.ConclusionsThese results suggested that the occurrences of somatic mutations in melanoma have been shaped by immunosurveillance. Mutations that lead to neoantigens with high MHC class I binding affinity are more likely to be eliminated and thus are less likely to be present in tumors.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Reza Hosseini ◽  
Hamzeh Sarvnaz ◽  
Maedeh Arabpour ◽  
Samira Molaei Ramshe ◽  
Leila Asef-Kabiri ◽  
...  

AbstractTumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.


2022 ◽  
Author(s):  
sunnie M yoh ◽  
Joao Mamede ◽  
Derrick Lau ◽  
Narae Ahn ◽  
Maria T Sanchez ◽  
...  

Cyclic GMP-AMP synthase (cGAS) is a primary sensor of aberrant DNA that governs an innate immune signaling cascade, leading to the induction of the type-I interferon response. We have previously identified polyglutamine binding protein 1, PQBP1, as an adaptor molecule required for cGAS-mediated innate immune response of lentiviruses, including the human immunodeficiency virus 1 (HIV-1), but dispensable for the recognition of DNA viruses. HIV-1-encoded DNA is synthesized as a single copy from its RNA genome, and is subsequently integrated into the host chromatin. HIV-1 then produces progeny through amplification and packaging of its RNA genome, thus, in contrast to DNA viruses, HIV-1 DNA is both transient and of low abundance. However, the molecular basis for the detection and verification of this low abundance HIV-1 DNA pathogen-associated molecular pattern (PAMP) is not understood. Here, we elucidate a two-factor authentication strategy that is employed by the innate immune surveillance machinery to selectively respond to the low concentration of PAMP, while discerning these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates intact viral capsid, which serves as a primary verification step for the viral nucleic acid cargo. As the reverse transcription and capsid disassembly initiate, cGAS protein is then recruited to the capsid in a PQBP1-dependent manner, enabling cGAS molecules to be co-positioned at the site of PAMP generation. Thus, these data indicate that PQBP1 recognition of the HIV-1 capsid sanctions a robust cGAS-dependent response to a limited abundance and short-lived DNA PAMP. Critically, this illuminates a molecular strategy wherein the modular recruitment of co-factors to germline encoded pattern recognition receptors (PRRs) serves to enhance repertoire of pathogens that can be sensed by the innate immune surveillance machinery.


Author(s):  
Haohao Zhang ◽  
Yiming Hu ◽  
Dandan Liu ◽  
Zhi Liu ◽  
Ningxia Xie ◽  
...  

AbstractIntestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 267
Author(s):  
Lourdes Cortes-Dericks ◽  
Domenico Galetta

Causing a high mortality rate worldwide, lung cancer remains an incurable malignancy resistant to conventional therapy. Despite the discovery of specific molecular targets and new treatment strategies, there remains a pressing need to develop more efficient therapy to further improve the management of this disease. Cancer stem cells (CSCs) are considered the root of sustained tumor growth. This consensus corroborates the CSC model asserting that a distinct subpopulation of malignant cells within a tumor drives and maintains tumor progression with high heterogeneity. Besides being highly tumorigenic, CSCs are highly refractory to standard drugs; therefore, cancer treatment should be focused on eliminating these cells. Herein, we present the current knowledge of the existence of CSCs, CSC-associated mechanisms of chemoresistance, the ability of CSCs to evade immune surveillance, and potential CSC inhibitors in lung cancer, to provide a wider insight to drive a more efficient elimination of this pro-oncogenic and treatment-resistant cell fraction.


2022 ◽  
Vol 12 ◽  
Author(s):  
Neel H. Mehta ◽  
Jonah Sherbansky ◽  
Angela R. Kamer ◽  
Roxana O. Carare ◽  
Tracy Butler ◽  
...  

The human brain functions at the center of a network of systems aimed at providing a structural and immunological layer of protection. The cerebrospinal fluid (CSF) maintains a physiological homeostasis that is of paramount importance to proper neurological activity. CSF is largely produced in the choroid plexus where it is continuous with the brain extracellular fluid and circulates through the ventricles. CSF movement through the central nervous system has been extensively explored. Across numerous animal species, the involvement of various drainage pathways in CSF, including arachnoid granulations, cranial nerves, perivascular pathways, and meningeal lymphatics, has been studied. Among these, there is a proposed CSF clearance route spanning the olfactory nerve and exiting the brain at the cribriform plate and entering lymphatics. While this pathway has been demonstrated in multiple animal species, evidence of a similar CSF egress mechanism involving the nasal cavity in humans remains poorly consolidated. This review will synthesize contemporary evidence surrounding CSF clearance at the nose-brain interface, examining across species this anatomical pathway, and its possible significance to human neurodegenerative disease. Our discussion of a bidirectional nasal pathway includes examination of the immune surveillance in the olfactory region protecting the brain. Overall, we expect that an expanded discussion of the brain-nose pathway and interactions with the environment will contribute to an improved understanding of neurodegenerative and infectious diseases, and potentially to novel prevention and treatment considerations.


2022 ◽  
Vol 1 ◽  
Author(s):  
Yusuke Higuchi ◽  
Jun-ichirou Yasunaga ◽  
Masao Matsuoka

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases including HTLV-1-associated myelopathy (HAM). A remarkable feature of HTLV-1 is that this virus transmits primarily through cell-to-cell contact. HTLV-1 increases the number of infected cells in vivo to ensure its survival and transmission. Therefore, survival of HTLV-1-infected cells in vivo is very critical for transmission under the host immune surveillance. HTLV-1 possesses multiple strategies to evade host immune responses. Among viral genes, Tax and HTLV-1 bZIP factor (HBZ) play crucial roles in the proliferation of infected cells and the subsequent development of ATL. Although Tax strongly activates the NF-kB pathway, the immunogenicity of Tax is very high; it is a major target of cytotoxic T lymphocytes. Therefore, the virus minimizes Tax production, expressing it only intermittently in vivo. On the other hand, the immunogenicity of HBZ is low, and its expression is maintained in all ATL cases. HBZ transforms the immunophenotype of infected cells into regulatory T cell-like (CD4+ CD25+ CCR4+ TIGIT+ Foxp3+), and promotes the production of immunosuppressive cytokines. Furthermore, HBZ mRNA not only encodes the protein but also functions itself like long non-coding RNA. As a result, Tax and HBZ enable long-term escape from host immunity, persistent infection, and proliferation of infected cells. Here, we review the viral strategies to counteract to host immune surveillance system.


2022 ◽  
Vol 10 (1) ◽  
pp. e003325
Author(s):  
Shiping Jiao ◽  
Qing Xiong ◽  
Meisi Yan ◽  
Xiaolu Zhan ◽  
Zhenhuang Yang ◽  
...  

BackgroundSentinel lymph nodes (LNs) are regarded as key immune surveillance sites in cancer wherein mature dendritic cells present tumor-derived antigens to prime and activate T cells, which then migrate to the tumor site. However, it is unclear whether the tumor-specific T cells can be elicited within the tumor independent of the sentinel LNs.MethodsWe performed an integrative analysis of gene expression profiles of 65,285 cells and T cell receptor sequences of 15,831 T cells from 5 paired primary breast tumors and sentinel LNs to identify where clonal T cells come from and the characteristics of those clonal T cells.ResultsThe proportion of clonal T cells was higher in the primary tumors compared with the sentinel LNs, whereas all expanded clones identified in the sentinel LN were also present in the primary tumors. In contrast, 10.91% of the expanded clones in the primary tumors were not found in the sentinel LNs. These novel intratumoral T cell clones were characterized by high tissues retention capacity (CXCR6 +ITGAE+) and a distinct coinhibitory pattern (CD39 +NKG2A+) compared with the expanded T cell clones common to both sites. Furthermore, multiplex immunofluorescence imaging showed the presence of tertiary lymphoid structures (TLS) in the primary breast tumors wherein the activated cytolytic T cells were concentrated, indicating its possible role in eliciting non-sentinel LN-derived T cell clones.ConclusionsOur study revealed expanded intratumor non-sentinel LN derived T cell clones located in the TLS, which points to the need for exploring the role of TLS in antitumor immunity.


2022 ◽  
Vol 23 (1) ◽  
pp. 488
Author(s):  
Aneta Sevcikova ◽  
Nikola Izoldova ◽  
Viola Stevurkova ◽  
Barbora Kasperova ◽  
Michal Chovanec ◽  
...  

Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.


Sign in / Sign up

Export Citation Format

Share Document