CXCR4 Upregulation Is a Biomarker Of Sensitivity To Targeted Inhibition Of B-Cell Receptor Signaling In Diffuse Large B-Cell Lymphoma

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 631-631 ◽  
Author(s):  
Linfeng Chen ◽  
Yansheng Hao ◽  
Jing Ouyang ◽  
Bjoern Chapuy ◽  
Donna S. Neuberg ◽  
...  

Abstract B-cell receptor (BCR) signaling pathway components represent promising treatment targets in multiple B-cell tumors including diffuse large B-cell lymphoma (DLBCL). BCR signaling activates proximal pathway components such as the spleen tyrosine kinase (SYK) and downstream effectors including PI3K/AKT and NF-κB. In recent studies, we characterized distinct SYK/PI3K/AKT-dependent viability pathways in BCR DLBCL cell lines and primary tumors with high- or low-baseline NF-κB activity and defined additional SYK/PI3K/AKT-dependent processes essential for BCR DLBCLs with low- or high-baseline NF-κB (Chen et al Cancer Cell 2013; 23:826-838). For example, SYK/PI3K/AKT-dependent cholesterol biosynthesis was identified as a feed-forward mechanism of preserving the integrity of BCRs in lipid rafts in all BCR-dependent DLBCLs. In the current study, we sought to identify biomarkers of intact BCR signaling in DLBCLs with low or high baseline NF-κB. We found highly significant transcriptional upregulation of CXCR4 in all BCR-dependent DLBCLs treated with a chemical SYK inhibitor (R406). These results were of particular interest because BCR signaling inhibits stromal cell-derived factor (SDF)-1α chemotaxis and promotes intermobilization of the SDF-1α receptor, CXCR4. To expand on our findings, we analyzed CXCR4 transcript abundance in a large panel of cell lines including BCR-dependent/ low NF-κB (GC type) and BCR-dependent/ high NF-κB (ABC type) and BCR-independent/ OxPhos DLBCLs. CXCR4 transcript abundance was significantly and selectively upregulated in all BCR-dependent DLBCL lines assessed by qRT-PCR following chemical SYK inhibition. Consistent with the qRT-PCR results, SYK blockade also selectively upregulated cell surface CXCR4 expression in all BCR-dependent DLBCLs. Similar results were obtained following SYK knockdown with multiple independent shRNAs; CXCR4 transcript abundance was significantly and selectively upregulated in all BCR-dependent/ low NF-κB (GCB) DLBCLs and BCR-dependent/ high NF-κB (ABC) DLBCLs but was not altered in BCR-independent/ OxPhos tumors. Following SYK blockade, we also observed significant CXCR4 induction (by qRT-PCR) in multiple primary BCR-dependent DLBCLs (NF-κB low and NF-κB high) and unchanged CXCR4 levels in primary BCR-independent tumors. These data confirm that the observations regarding SYK blockade and CXCR4 induction in BCR-dependent DLBCL cell lines translated to primary tumors. Our recent studies indicate that all BCR-dependent DLBCLs exhibit SYK/PI3K/AKT signaling and modulation of FOXO1 regardless of baseline NF-κB levels. Given the recent identification of CXCR4 as a FOXO1 target, we asked whether modulation of CXCR4 in DLBCLs was via a PI3K/AKT pathway. In BCR-dependent DLBCLs with low or high baseline NF-κB, chemical PI3K inhibition (LY294002) phenocopied chemical SYK blockade (R406) with highly significant transcriptional upregulation of CXCR4. Moreover, in BCR-dependent DLBCL cell lines, enforced expression of a constitutively active form of AKT (myrAKT) abrogated CXCR4 upregulation resulting from SYK blockade. These data indicate that in BCR-dependent DLBCLs, CXCR4 is modulated by a SYK/PI3K/AKT-dependent pathway. To assess the functional significance of CXCR4 upregulation in BCR-dependent DLBCLs, we performed a transwell chemotaxis assay and evaluated migration toward a SDF-1α gradient. Following chemical SYK inhibition, all BCR-dependent DLBCLs exhibited significantly increased migration toward the CXCR4 ligand, SDF-1α, whereas the BCR-independent/ OxPhos DLBCLs were unaffected. The enhanced SDF-1α dependent migration was abrogated when the chemotaxis assay was performed in the presence of the specific CXCR4 inhibitor, AMD3100, confirming the specificity of the observed effect. Therefore, in BCR-dependent DLBCLs with low or high baseline NF-kB, SYK/PI3K inhibition is associated with significant and functionally relevant upregulation of CXCR4. For these reasons, CXCR4 may serve as a robust biomarker to assess the integrity of the BCR pathway and evaluate the efficacy of BCR inhibition in DLBCL. Disclosures: Off Label Use: R406 is not get approved, but is being evaluated in DLBCL and CLL.

Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2230-2237 ◽  
Author(s):  
Linfeng Chen ◽  
Stefano Monti ◽  
Przemyslaw Juszczynski ◽  
John Daley ◽  
Wen Chen ◽  
...  

The role of B-cell receptor (BCR)–mediated survival signals in diffuse large B-cell lymphoma (DLBCL) remains undefined. Ligand-induced BCR signaling induces receptor oligomerization, Igα/β immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation, and activation of the spleen tyrosine kinase (SYK), which initiates downstream events and amplifies the initial BCR signal. BCRs also transmit low-level tonic survival signals in the absence of receptor engagement. Herein, we assess the role of SYK-dependent tonic BCR survival signals in DLBCL cell lines and primary tumors and evaluate the efficacy of an ATP-competitive inhibitor of SYK, R406, in vitro. R406 induced apoptosis of the majority of examined DLBCL cell lines. In R406-sensitive DLBCL cell lines, R406 specifically inhibited both tonic- and ligand-induced BCR signaling (autophosphorylation of SYK525/526 and SYK-dependent phosphorylation of the B-cell linker protein [BLNK]). The majority of examined primary DLBCLs also exhibited tonic- and ligand-induced BCR signaling; in these primary tumors, BCR signaling was also inhibited by R406. Of note, BCR-dependent and R406-sensitive DLBCL cell lines were independently identified as “BCR-type” tumors by transcriptional profiling. Therefore, SYK-dependent tonic BCR signaling is an important and potentially targetable survival pathway in some, but not all, DLBCLs. In addition, R406-sensitive DLBCLs can be identified by their transcriptional profiles.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3022-3022
Author(s):  
Jonathan Scott Rink ◽  
Sol Misener ◽  
Osman Cen ◽  
Shuo Yang ◽  
Leo I. Gordon ◽  
...  

Abstract Introduction: We previously reported that our bio-inspired, synthetic high-density lipoprotein-like nanoparticles (HDL NP) induced apoptosis in B cell lymphoma cells expressing scavenger receptor type B1 (SCARB1), the high-affinity receptor for cholesterol-rich HDLs. HDL NPs consist of a 5nm gold nanoparticle core surface functionalized with the HDL-defining apolipoprotein A1 and a phospholipid bilayer, and bind specifically to SCARB1, inducing the efflux of free cholesterol and inhibiting cholesteryl ester influx. SCARB1 is overexpressed in a subset of follicular and diffuse large B cell lymphomas (DLBCL), and resides in cholesterol-rich plasma membrane microdomains called lipid rafts, similar to the B cell receptor (BCR) and its associated signaling kinases. Upon binding to natural HDL, SCARB1 activates a number of pro-survival signaling kinases, including Akt and PI3K. Both Akt and PI3K are also involved in B cell receptor-mediated signaling in germinal center-derived (GC) DLBCL, through tonic BCR signaling, and activated B cell (ABC) DLBCL, through chronic active BCR signaling. Additionally, PI3K was recently shown to play a role in recruitment and activation of Btk, a crucial survival kinase downstream of the BCR. We hypothesized that small molecule inhibitors against pro-survival kinases, specifically Akt and Btk, will synergize with HDL NPs against B cell lymphomas. Methods: Burkitt's lymphoma (Ramos), GC DLBCL (SUDHL4) and ABC DLBCL (TMD8 and HBL-1) cell lines were treated with the Akt inhibitor GDC-0068 or the Btk inhibitor Ibrutinib, in the absence or presence of HDL NPs, and synergy was calculated using the Calcusyn software. Phos-flow was used to assay for changes in the phosphorylation status of Akt and Btk. Results: The Burkitt's lymphoma and GC DLBCL cell lines were more sensitive to HDL NP induced cell death compared to the ABC DLBCL cell lines (Ramos HDL NP IC50 = 1.5nM; SUDHL4 HDL NP IC50 = 2.1nM; TMD8 HDL NP IC50 = 31.4nM; HBL-1 HDL NP IC50 = 89nM). HDL NPs synergized with GDC-0068 in the Ramos, SUDHL4 and TMD8 cell lines (all combination indexes < 1). Correspondingly, HDL NPs dose-dependently decreased phosphorylation of Akt in Ramos and TMD8 cells. Ibrutinib synergized with the HDL NPs in all cell lines tested (all combination indexes < 1). In TMD8 cells, HDL NPs decreased p-Btk levels comparable to treatment with 10nM Ibrutinib. Addition of the PI3K inhibitor Pilaralisib (XL147) demonstrated mild synergy in the Ramos cell line, but not the SUDHL4, TMD8 or HBL-1 cell lines (all combination index values >1). Treatment of Ramos and SUDHL4 cells with an inhibitor of PTEN, a phosphatase responsible for acting in opposition to PI3K leading to inactivation of Akt, rescued the cells from HDL NP-induced cell death. TMD8 cells treated with the PTEN inhibitor demonstrated a smaller increase in survival when HDL NPs were applied, suggesting that PI3K may not play a major role in HDL NP-induced cell death in activated B cell DLBCLs. PTEN activity is influenced by the level of cholesterol and cholesteryl esters present in the cell, with increasing levels correlating with decreased PTEN activity. Cholesterol levels were higher in the ABC DLBCL cell lines compared to the other B cell lymphoma cell lines. HDL NPs significantly reduced the cholesterol content of Ramos cells, but not the TMD8 or HBL-1 cells, suggesting that the ability of the HDL NPs to alter cellular cholesterol homeostasis correlates with their ability to induce lymphoma cell death. Conclusion: HDL NPs demonstrated synergy with inhibitors to the pro-survival kinases Akt and Btk, suggesting that HDL NPs act to disrupt second messenger signaling pathways in lymphoma cells by directly altering signaling through SCARB1, modulating cellular cholesterol homeostasis, and/or through disruption of membrane raft organization. HDL NPs represent an innovative, targeted therapeutic, with great potential, to add to existing combination chemotherapy regimens. Disclosures Thaxton: Aurasense: Equity Ownership, Patents & Royalties: The patent for the HDL NPs has been licensed to Aurasense, a biotech company co-founded by C. Shad Thaxton..


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3720-3720
Author(s):  
Yue Zhang ◽  
Julie Parmentier ◽  
Zhongwu Lai ◽  
Greg O'Connor ◽  
Melissa Passino ◽  
...  

Abstract Abstract 3720 Spleen tyrosine kinase (SYK) plays a key role in B cell receptor mediated survival in certain B cell malignancies including Diffuse Large B Cell Lymphoma (DLBCL). Therefore, targeting SYK represents an emerging therapeutic approach for the treatment of DLBCL. Indeed, fostamatinib, an orally available SYK inhibitor, has shown promising clinical activity in non-Hodgkin lymphoma (Friedberg et al. 2010 Blood 115: 2578). However, the overall response rate for novel targeted agents in unselected relapsed refractory DLBCL patients remains 25–30%, highlighting the opportunity for development of better treatment strategies. Here, we used preclinical models to study the mechanism underlining the efficacy of R406, the metabolic active form of fostamatinib. R406 was characterized in a heterogeneous panel of 17 DLBCL cell lines including both ABC and GCB subtypes. Overall, the cellular selectivity of R406, particularly in ABC-subtype DLBCL cell lines, was consistent with other BCR-targeted agents such as BTK inhibitor PCI-32765 (ibrutinib) and PI3 kinase δ inhibitor CAL-101. This strongly suggests that R406 functions through inhibition of BCR-mediated survival signaling. Furthermore, phospho-flow analysis and Western Blotting have demonstrated the effect of R406 on both basal and anti-IgG/M stimulated BCR signaling. Specifically, R406 decreases phosphorylation of proximal BCR pathway regulators BLNK, PLCγ2, as well as key players in downstream effect pathways such as ERK, AKT, RPS6, 4EBP and STAT3. To investigate whether the inhibition of BCR signaling by R406 affects cell viability, flow-cytometry based apoptosis analysis was employed. R406 induced apoptosis in sensitive cell lines in a dose-dependent manner. Mechanistically, treatment with R406 reduced MCL1 protein level and down-regulated Bfl-1 expression in sensitive, but not resistant, cell lines, which may partially contribute to the observed efficacy. Given the critical role of NFκB-dependent survival signaling in ABC subtype DLBCL, we then investigated the effect of R406 on this pathway by monitoring NF-κB target gene expression via quantitative real time PCR. Consistent with previous publication (Davis et al. 2010, Nature 463: 88), R406 significantly blocked chronic active BCR-induced NFκB signaling in sensitive cell lines with CD79A/B mutations, leading to downregulation of IL-6/IL-10 and subsequent suppression of JAK/STAT3 signaling. In contrast, we observed little effect of R406 in cell lines with downstream activating mutations of the NFκB pathway (such as CARD11, A20 mutations). Therefore, the molecular nature of NF-κB pathway lesions may serve as a predictive marker for R406 responsiveness in ABC subtype DLBCL cell lines. Furthermore, in exploration of a common indicator of sensitivity to R406 in both ABC and GCB subtypes, we have confirmed that response to R406 is dependent on surface expression of a functional BCR and presence of a intact BCR signaling cascade (Chen et al. 2008 Blood 111: 2230). These cells are thus characterized as “B-cell Receptor active” or BCR subtype. Work is currently underway to further elucidate the characteristics of the BCR subtype, which may serve as a general selective marker for R406's efficacy in DLBCL cell lines. In conclusion, we have demonstrated that R406 functions as a BCR antagonist and reduces viability in DLBCL through inhibition of NFκB-mediated survival signals and downregulation of MCL-1. In addition, we have confirmed in ABC subtype DLBCL cell lines, similar to other BCR-targeted agents, R406 sensitivity is correlated with CD79A/B mutations whereas A20 or CARD11 mutations render cells resistance. Eventually, we proposed that BCR classification may serve as a broader selection maker for all DLBCL cell lines. Disclosures: Zhang: AstraZeneca: Employment, Equity Ownership. Parmentier:AstraZeneca: Employment, Equity Ownership. Lai:AstraZeneca: Employment, Equity Ownership. O'Connor:AstraZeneca: Employment, Equity Ownership. Passino:AstraZeneca: Employment, Equity Ownership. Powell:AstraZeneca: Employment, Equity Ownership. Devereaux:AstraZeneca: Employment, Equity Ownership. Byth:AstraZeneca: Employment, Possible shareholder Other.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 457-457
Author(s):  
Russell J.H. Ryan ◽  
Jelena Petrovic ◽  
Dylan Rausch ◽  
Caleb Lareau ◽  
Winston Lee ◽  
...  

Abstract Gain-of-function mutations in Notch receptor genes occur in 10-15% of cases of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), and are associated with inferior clinical outcomes. Nearly all Notch mutations reported in B cell tumors lead to loss of the C-terminal negative regulatory PEST domain and result in stabilization of the activated form of Notch (intracellular Notch [ICN]), whereas mutations that lead to ligand-independent Notch activation (which are common in T cell acute lymphoblastic leukemia [T-ALL]) are rare. ICN can be detected in tumor cells within lymph nodes of >80% of patients with CLL, suggesting that Notch may have a broader oncogenic role than the incidence of Notch mutations would suggest. However, the downstream targets of Notch in B-cell tumors have not been identified. We used a gamma-secretase inhibitor (GSI) washout strategy to determine the immediate, direct effects of Notch activation in three MCL cell lines with Notch gain-of-function mutations, including two cell lines with unusual Notch gene rearrangements that lead to ligand-independent Notch activation, as well as a third line with a Notch PEST domain mutation in which signaling was activated with recombinant Notch ligand. Using these models, we identified likely direct target genes and their associated genomic Notch response elements using RNA-seq and ChIP-Seq in the Notch-on and Notch-off states. Most of these response elements corresponded to long-range enhancers that showed Notch-dependent changes in H3K27 acetylation, and were bound by components of the Notch transcription complex (NTC) in both cell lines. We confirmed these associations by performing ChIP-Seq on primary CLL and MCL biopsies, and by identifying specific looping interactions with Notch target gene promoters in public genome-wide proximity ligation datasets (RNA Pol2 ChIA-PET) from a lymphoblastoid cell line expressing the EBV-encoded Notch surrogate protein EBNA2. MYC was among the most strongly Notch-activated genes in Notch-dependent MCL cell lines and was associated with NTC binding at two B cell-specific 5' enhancers distinct from the Notch-dependent MYC enhancer previously identified in T-ALL. MCL cell line proliferation was blocked by Cas9 nuclease or epigenetic repressors targeting the 5' MYC enhancers, whereas cells were rescued from Notch inhibition by GSI via transduction with MYC. Gene set enrichment analysis of other direct Notch target genes identified in MCL models showed enrichment for regulators of B cell receptor (BCR) signaling, including the Src family kinase genes FYN, LYN, and BLK, and the signaling complex adaptor BLNK, as well as regulators of CD40 and cytokine signaling. RNA-seq analysis of primary CLL lymph node biopsies revealed significantly higher expression of many Notch target genes in biopsies with high levels of ICN. To functionally validate Notch target genes in primary tumors, we co-cultured CLL and MCL cells obtained from peripheral blood with Notch ligand-expressing stromal cells in the presence ("notch off") or absence ("notch on") of GSI, and demonstrated increased expression of Notch target genes, including MYC, in the "notch-on" cells. Furthermore, "notch-on" CLL cells showed increased phosphorylation of the BCR signaling intermediates SYK and PLCg2 upon BCR crosslinking compared to GSI-treated cells. Finally, we validated Notch-dependent regulation of target genes in vivo in a patient-derived xenograft model of NOTCH1-mutant MCL. Notch target gene expression was significantly higher in MCL cells within the spleen versus bone marrow or blood, but was markedly reduced in animals treated for five days with GSI. Additional xenograft studies are ongoing, and will be described at the meeting. Our data link active Notch signaling to two well-characterized oncogenic drivers in B cell lymphoma, MYC and BCR signaling, and may have important implications for the development of treatment strategies involving Notch antagonists and other targeted therapeutics, such as BCR targeting agents. Disclosures Weinstock: Novartis: Consultancy, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 779-779 ◽  
Author(s):  
Ondrej Havranek ◽  
Jingda Xu ◽  
Stefan Koehrer ◽  
Zhiqiang Wang ◽  
Justin M Comer ◽  
...  

Abstract Introduction. Targeting antigen-driven B-cell receptor (BCR) signaling with the BTK inhibitor ibrutinib is clinically effective against most B-cell lymphomas, including activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL), but not germinal center B-cell (GCB) DLBCL. We have formally confirmed that GCB-DLBCL cell lines utilize tonic BCR signaling, by showing: 1) sensitivity (variable) to knockout (KO) of the BCR, SYK, and CD19; 2) dependence on CD79A ITAM phosphorylation; and 3) independence from BCR antigen specificity. However, uncertainty remains about molecular events in upstream parts of tonic BCR signaling, why dependence of GCB-DLBCL cells on tonic BCR signaling is variable, and their clinical relevance. Methods. We used CRISPR/Cas9 methods to modify selected genes by KO and/or knock-in (KI) of the cDNA of a fluorescent protein (FP; e.g., GFP), with the FP serving as a marker of cells with gene KO or modification, or as a gene-fused tag for localization or quantitation. Cells expressing a membrane-targeted Forster resonance energy transfer (FRET) based AKT activity reporter (Lyn-AktAR2) were used to measure AKT activity directly by flow cytometry (FCM). Results. The effect of KI of CD79A Y188F mutation alone was similar to complete BCR KO, implying that CD79A Y188 phosphorylation is essential for tonic BCR signal transduction. Western blot analysis of GCB-DLBCL cell lines after BCR KO showed variable decreases of AKT S473 phosphorylation (frequently used as surrogate measure of AKT activity), but these did not correlate well with the variable decreases in proliferation of GCB-DLBCL cell lines caused by BCR KO. Measuring AKT activity directly (Fig. 1), or by another indirect approach (surface expression of CXCR4, a target gene of FOXO1 inhibited by AKT activity), showed high correlation between decreases in AKT activity and proliferation after BCR KO. In contrast to the variable effect of BCR KO on growth, pan-AKT KO was uniformly growth-slowing in GCB-DLBCL lines (Fig. 2). Interestingly, baseline surface density of BCR units in GCB lines, quantified by FCM using CD79A-GFP KI cells or anti-CD79B staining, correlated highly with reduction in growth or AKT activity caused by BCR KO (Fig. 3). These findings lead us to conclude that the BCR contributes to AKT activation in GCB-DLBCL cell lines, to a variable degree determined by BCR surface density. We also conclude that BCR surface density is determined by cell line-specific factors, as well as immunoglobulin heavy (IgH) and light (IgL) hypervariable region (HVR) sequences, based on measurements of BCR surface levels after exchanging endogenous HVR sequences in OCI-Ly19 and OCI-Ly7 cell lines for HVRs derived from other GCB and ABC-DLBCL cell lines. Reduction of AKT activity after BCR KO (measured by FRET reporter) and baseline BCR surface density in GCB-DLBCL cell lines also correlated well with the sensitivity of GCB-DLBCL lines to the clinically-tested SYK inhibitor (P505-15, PRT062607) or FDA-approved PI3K p110d isoform specific inhibitor (idelalisib). Interestingly, isogenic GCB-DLBCL cell lines with KO of PTEN, a negative regulator of AKT activation, were substantially more resistant to both inhibitors. A crucial role of PTEN deletion in overcoming dependence on tonic BCR signaling in GCB-DLBCL is supported by evidence from two naturally PTEN-deficient cell lines: SUDHL10, which adjusts to BCR KO and resumes normal growth, and HT, which lacks BCR expression, due to a frameshifting deletion in its IgH HVR. Re-expression of the BCR in HT, by KI to correct the IgH sequence, does not affect HT cell line growth. Conclusion. Our findings suggest a biomarker-guided therapeutic strategy in GCB-DLBCL: targeting tonic BCR signaling in BCR-high patients, by inhibiting CD79A phosphorylation, SYK, or PI3K, and downstream targeting of AKT in BCR-low and/or PTEN-deficient patients. Figure 1. Correlation of relative proliferation after BCR KO with decrease of AKT activity (as measured by FRET efficiency of AKT activity reporter) in GCB-DLBCL cell lines. Figure 1. Correlation of relative proliferation after BCR KO with decrease of AKT activity (as measured by FRET efficiency of AKT activity reporter) in GCB-DLBCL cell lines. Figure 2. Effect of BCR KO or pan-AKT KO in GCB-DLBCL cell lines. Figure 2. Effect of BCR KO or pan-AKT KO in GCB-DLBCL cell lines. Figure 3. Correlation of relative proliferation after BCR KO with baseline BCR surface density (as measured by flow cytometry of cells with CD79A-GFP fusion) in GCB-DLBCL cell lines. Figure 3. Correlation of relative proliferation after BCR KO with baseline BCR surface density (as measured by flow cytometry of cells with CD79A-GFP fusion) in GCB-DLBCL cell lines. Disclosures Burger: Pharmacyclics: Research Funding. Westin:Chugai: Membership on an entity's Board of Directors or advisory committees; Spectrum: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; ProNAi: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 493-493 ◽  
Author(s):  
Ondrej Havranek ◽  
Stefan Koehrer ◽  
Justin M Comer ◽  
Zhiqiang Wang ◽  
Jingda Xu ◽  
...  

Abstract Introduction. An essential role for the B-cell receptor (BCR) has been shown in multiple types of B-cell lymphoma by studies of cell lines and clinical responses to inhibitors of SYK or BTK. Diffuse large B-cell lymphoma (DLBCL) lines of the germinal center B-cell (GCB) type express a BCR, which can signal after crosslinking, but are unaffected by BCR pathway targeting toxic to lines of the activated B-cell (ABC) DLBCL subtype: knockdown of BCR signaling mediators (BTK, CD79A, and CD79B) by shRNA, and small-molecule inhibition of BTK by ibrutinib. GCB-DLBCL lines (and primary samples) also lack constitutive NF-kB activity and mutations in ITAM domains of CD79A or CD79B, BCR-related features of ABC-DLBCL. Most GCB-DLBCL patients resist BTK inhibition by ibrutinib, further suggesting that BCR signaling is not a feature of GCB-DLBCL. Methods. In 8 GCB-DLBCL lines (OCI-Ly7, OCI-Ly19, SUDHL-4, SUDHL-6, SUDHL-10, DB, BJAB, and HT) and one ABC-DLBCL line (HBL-1), we used electroporation to deliver a plasmid expressing Cas9 protein and a guide RNA (gRNA) targeting one of these: constant exons of IGHM, IGHG, or Igκ; the cell line-specific IgH hypervariable region (HVR); or CXCR4. Knock-in (KI) of mouse CD8a (mCD8a), after the HVR V segment leader sequence and followed by a polyA signal, was used as a positive marker of BCR knockout (KO) in HBL-1 and OCI-Ly19 cell lines. Surface BCR, CXCR4, and mCD8a were detected by flow cytometry (FACS). BCR KO cells were viably sorted 4-6 days after electroporation, cultured 1-3 days more, and studied by whole-genome gene expression profiling (GEP) on Illumina HT12v4 arrays and Western blotting. Results. Only 2 days after electroporation, FACS showed cells with correlated loss of surface BCR proteins (IgH, Igκ or Igl, and CD79B), which eventually declined to undetectable levels. Forward and side scatter showed that BCR KO cells were smaller. The proportion of BCR KO (or mCD8a KI/KO) cells declined over time, steadily after complete BCR elimination (Fig. 1A). BCR KO cells in GCB-DLBCL lines grew more slowly than BCR-replete cells but variably, from almost no difference in BJAB to growth cessation in SUDHL-4, SUDHL-10 and HBL-1 (Fig. 1B). CXCR4 KO cells were a stable proportion (Fig. 1A) with a normal growth rate (Fig. 1B), indicating that growth reduction by BCR KO is specific. Continued expression of mCD8a indicated viability and sustained IgH transcription in BCR KO cells. Cell cycle analysis showed lower proportions of S and G2/M phases in BCR KO cells, proportional to growth retardation, and sub-G1 cells in OCI-Ly7 (Fig. 2), SUDHL-4 and SUDHL-10. Apoptosis in OCI-Ly7 BCR KO cells was confirmed with a caspase-3 fluorogenic substrate. Igκ KO similarly caused complete BCR loss and growth retardation, in OCI-Ly7 cells even more than with IgH KO. In the HT cell line, which lacked BCR expression due to a single-nucleotide deletion in its IgH HVR, KI repaired the HVR and caused expression of surface BCR (IgM with Igκ and CD79B) but no change in growth rate, suggesting BCR-proximal activators of BCR signaling pathways. Targeted BCR KO is not currently a therapeutic option, but BCR KO cells were relatively more sensitive to an in vitro regimen modeling the non-prednisone drugs of CHOP. No change in drug sensitivity was observed with BCR KO in BJAB, or in CXCR4 KO cells. GEP showed that BCR KO downregulated several genes characteristically expressed by GCB-DLBCL, and genes associated with negative regulation of BCR signaling. Pathway analysis with Gene Set Enrichment Analysis (GSEA) showed that BCR KO reduced expression of proliferation-related signatures, and produced changes associated with B-cell differentiation stages lacking a mature BCR, either early (pre-B cells) or late (plasma cells). GSEA implicated loss of MAPK/ERK and PI3K/AKT signaling pathways as mediators of BCR KO-induced changes, confirmed by Western blotting showing loss of phosphorylation of SYK, AKT and ERK after BCR KO. Conclusions. Complete BCR KO by Cas9/gRNA showed that GCB-DLBCL lines require the BCR for optimal viability, cell growth, and chemotherapy resistance. BCR KO-induced changes are mediated by MAPK/ERK and PI3K/AKT signaling pathways. Table A. B. Figure 1. Figure 1A. BCR KO cells (distinguished from BCR-replete cells by FACS), but not CXCR4 KO cells, show relative decline (A) and slower absolute growth (B) in mixed cultures. Figure 1A. BCR KO cells (distinguished from BCR-replete cells by FACS), but not CXCR4 KO cells, show relative decline (A) and slower absolute growth (B) in mixed cultures. Figure 1B Figure 1B. Figure 2 Cell cycle changes with BCR KO in OCI-Ly7. Figure 2. Cell cycle changes with BCR KO in OCI-Ly7. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chao Xue ◽  
Xin Wang ◽  
Lingyan Zhang ◽  
Qingyuan Qu ◽  
Qian Zhang ◽  
...  

Abstract Background In recent years, the B cell receptor (BCR) signaling pathway has become a “hot point” because it plays a critical role in B-cell proliferation and function. Bruton’s tyrosine kinase (BTK) is overexpressed in many subtypes of B-cell lymphoma as a downstream kinase in the BCR signaling pathway. Ibrutinib, the first generation of BTK inhibitor, has shown excellent antitumor activity in both indolent and aggressive B-cell lymphoma. Main body Ibrutinib monotherapy has been confirmed to be effective with a high response rate (RR) and well-tolerated in many B-cell lymphoma subgroups. To achieve much deeper and faster remission, combination strategies contained ibrutinib were conducted to evaluate their synergistic anti-tumor effect. Conclusions For patients with indolent B-cell lymphoma, most of them respond well with ibrutinib monotherapy. Combination strategies contained ibrutinib might be a better choice to achieve deeper and faster remission in the treatment of aggressive subtypes of B-cell lymphoma. Further investigations on the long-term efficacy and safety of the ibrutinib will provide novel strategies for individualized treatment of B-cell lymphoma.


Blood ◽  
2021 ◽  
Author(s):  
Wendan Xu ◽  
Philipp Berning ◽  
Georg Lenz

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category comprising distinct molecular subtypes characterized by diverse genetic aberrations that dictate patient outcome. As roughly one-third of DLBCL patients are not cured by current standard chemo-immunotherapy a better understanding of the molecular pathogenesis is warranted to improve outcome. B-cell receptor (BCR) signaling is crucial for the development, growth and survival of both normal and a substantial fraction of malignant B-cells. Various analyses revealed genetic alterations of central components of the BCR or its downstream signaling effectors in some subtypes of DLBCL. Thus, BCR signaling and the downstream NF-κB and PI3K cascades have been proposed as potential targets for the treatment of DLBCL patients. As one of the main effectors of BCR activation, PI3K mediated signals play a crucial role in the pathogenesis and survival of DLBCL. In this review, we summarize our current understanding of BCR signaling with a special focus on the PI3K pathway in DLBCL and how to utilize this knowledge therapeutically.


Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1255-1260 ◽  
Author(s):  
A Ganser ◽  
C Carlo-Stella ◽  
CR Bartram ◽  
T Boehm ◽  
G Heil ◽  
...  

Abstract To analyze the pathogenesis of B-cell lymphomas in patients with acquired immunodeficiency syndrome (AIDS), we studied two cell lines, Es I and Es III, established from one such lymphoma for the presence of sequences of the Epstein-Barr virus (EBV) and the human immunodeficiency virus [HIV; lymphadenopathy-associated virus (LAV/HTLV- III)] as well as for the presence of cytogenetic abnormalities and monoclonal rearrangements of immunoglobulin and T-cell receptor genes. Both cell lines expressed the same IgM, kappa phenotype as the original lymphoma. The karyotype of Es I was 46, XY, t(8;14), 2 p+, inv (6p), 17p-, and the cells of Es III had an additional i(7q). Immunoglobulin gene studies demonstrated the identical monoclonal rearrangements in both cell lines. Neither EBV nor HIV sequences were detectable in the malignant B cells at the genomic level, leading to the conclusion that mechanisms other than transformation by EBV or HIV may have contributed to the B-cell lymphoma in this patient and possibly also to the generally increased frequency in patients with AIDS.


Sign in / Sign up

Export Citation Format

Share Document