Perforin Positive Regulatory DCs In Immune Tolerance: Novel Anti-Inflammatory Players In Metabolic Syndrome

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 784-784
Author(s):  
Yael Zlotnikov Klionsky ◽  
Bar Nathansohn ◽  
Chava Rosen ◽  
Anna Aronovich ◽  
Steffen Jung ◽  
...  

Abstract Immature dendritic cells (imDCs) can have a tolerizing effect in the steady state or following transplantation. However, due to the significant heterogeneity of this cell population it is difficult to study the mechanisms of their tolerance induction. We previously described the generation of a highly defined population of imDCs expressing perforin and granzyme A (Perf-DCs) from hematopoietic progenitors; using TCR transgenic T cells we monitored their ability to delete cognate CD4 and CD8 T cells. While the former are deleted via an MHC-independent mechanism through the nitric oxide system, CD8+ T cell deletion occurs through a unique MHC-dependent perforin-based killing mechanism. This involves activation of Toll-like receptors 7, and signaling through Triggering Receptor Expressed on Myeloid cells -1. Importantly, this novel subpopulation of Perf-DCs was also detected in various lymphoid tissues in normal animals, and its frequency is markedly enhanced upon GM-CSF administration (Zangi et al, Blood 2012). Here, we investigated the potential regulatory role of Perf-DCs in steady state in-vivo by selectively knocking out the expression of perforin in these cells. To this end, we generated BM chimeras using a 1:1 mixture of BM from perforin KO mice and from BM of mice ablated of CD11chigh DCs using diphtheria toxin expression under the CD11c promoter (Birnberg et al, Immunity 2008). In the resulting PKO-DTA chimeras, perforin expression was completely lost in conventional CD11c+ DCs, while 50% of the T and NK cell populations still expressed perforin. At 6 months post transplant, DTA-PKO chimeric mice spontaneously gained more weight than chimeras created using a mixture of normal BM with BM from perforin KO mice (WT-PKO). The increased weight gain observed in DTA-PKO mice prompted us to test whether this phenomenon was accompanied by other metabolic alterations. Indeed, DTA-PKO mice exhibited elevated serum cholesterol and triglyceride levels compared to control WT-PKO chimeras (140±3.5 vs. 115±8.6, 125±31vs. 88±9.8 mg/dl, N≥5). Total body fat percent as measured by body composition MRI was significantly higher in DTA-PKO mice (30.3%±2.2 vs. 14.5%±2.3), along with highly elevated levels of leptin (37±10.5 vs. 9.8±3 ng/ml). In addition, DTA-PKO chimeric mice exhibited glucose intolerance (p=0.034) and reduced insulin sensitivity (p=6.07x10-6). Immunohistological evaluation revealed a significant reduction in the percentage of insulin expressing pancreatic β cell- tissue (2.2%±0.54 vs. 5.75%±1.98). Importantly, the visceral adipose tissue (VAT) of DTA-PKO chimeras contained more crown-like structures typically formed when macrophages within inflamed AT surround dead adipocytes. Based on these characteristics of metabolic syndrome that develop in DTA-PKO chimeras over 6 months, we tested whether high-fat diet (HFD) enhances the rate of disease development. Indeed, DTA-PKO chimeras maintained on HFD displayed more pronounced weight gain compared to their HFD-maintained WT counterparts when tested 6 weeks after HFD initiation. Likewise, cholesterol and triglycerides as well as leptin and IL-1b in the serum, and TNF-α and IL-6 in the AT were elevated in DTA-PKO mice compared to the WT-PKO animals. Importantly, analysis of immune cell populations in collagenase-digested VAT revealed more CD8+ and CD4+ T cells in DTA-PKO mice compared to control chimeras (78.3x103±17.5x103 vs. 24.9x103±3.2x103 and 113x103±21x103 vs. 43x103±4.4x103respectively). Thus, triggering of inflammation in the AT previously shown to be mediated by T cells (Winer et al, Nat.Med 2009; Nishimura et al, Nat.Med 2009), is not effectively regulated in mice lacking Perf-DCs. Interestingly, a similar enhanced rate of metabolic imbalance was found in regular diet-fed DTA-PKO chimeras using RIP-mOVA mice expressing ovalbumin in the thymus, pancreas and kidneys, and known to be more prone to autoimmunity. Moreover, a significantly larger fraction of dividing cells was observed when CD8 T cells, isolated from AT of DTA-PKO chimeric RIP-mOVA mice were stimulated against splenocytes of mice expressing ovalbumin in all tissues (wOVA mice). Taken together, our results demonstrate that Perf-DCs have a unique immune regulatory role under steady state, controlling unwanted inflammatory processes in adipose tissue. Further studies of the role of Perf-DCs in other models of autoimmunity are warranted. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 576-576
Author(s):  
Li Ma ◽  
Elisa K. Simpson ◽  
June Li ◽  
Min Xuan ◽  
Miao Xu ◽  
...  

Abstract Background:Immune thrombocytopenia (ITP) is a common bleeding disorder. Autoantibodies against platelet GPIIbIIIa (integrin αIIbβ3, 70-80%) and GPIb-complex (20-40%) are considered to be the major mechanism leading to autologous platelet destruction. Recent studies demonstrated that in addition to autoantibodies, CD8+ cytotoxic T cells (CTLs) also contribute to thrombocytopenia, either through direct cytotoxicity against platelets or megakaryocytes. However, the roles of CD8+ regulatory T cells (Tregs) in ITP have not been adequately explored. Methods and Results: We developed the first animal models of steroid treatment in ITP, encompassing both the passive and active forms. In the passive model, we injected anti-β3 antibodies to induce transient antibody mediated thrombocytopenia. We found that a single intraperitoneal (IP) injection of steroids post-antibody injection was effective at rescuing platelet counts. We also adapted an active model of ITP whereby wild-type (WT) BALB/c mice were transfused with splenocytes from WT platelet immunized β3-/-mice. This model encompasses both antibody and cell-mediated ITP resulting in sustained thrombocytopenia. In this model, we found steroid treatment (prednisone and dexamethasone) administered daily either orally or through IP-injection were equally efficacious at ameliorating thrombocytopenia. Furthermore, immunophenotyping and cytokine analysis reveal a similar profile as reported of human ITP patients responsive to steroid treatments. Thus, successful steroid treatments in these animal models are representative of the therapeutic effects of steroid treatments seen in human ITP patients. To study the role of CD8+ T cells in the pathogenesis and response to steroid treatments in ITP, we depleted CD8+ T cells from splenocytes prior to its transfusion into WT mice. Unexpectedly,we found CD8+ T cell depleted splenocyte (lacking in CTL cells) engrafted mice had lower, but not higher, platelet counts and were less responsive to dexamethasone (DEX) treatment compared to non-depleted engrafted mice. Furthermore, in the passive ITP model, depletion of CD8+ T cells from mice prior to injection of anti-β3 antibodies resulted in more severe thrombocytopenia, compared with non-depleted mice. Conversely, transfusion of either antigen-primed CD8+ (isolated from immunized β3-/- splenocytes) or WT/β3-/- naïve CD8+ T cells alone was sufficient to rescue platelet counts and improve response to DEX in the passive ITP model. These results indicate for the first time that CD8+ T cells from both antigen-primed and naïve populations play a protective role in attenuating platelet clearance. In further support of these observations, we detected significant increased populations of both CTLs and CD8+ Tregs including, CD8+CD25+Foxp3+, CD8+CD103+, CD8+CD122+ and CD8+CD28- in the blood, and spleen of immunized β3-/- mice. Interestingly, the CD8+ Tregs populations were further increased while CTL population decreased following DEX treatment in the active ITP model. In vitro splenocyte cultures were used to explore putative regulatory mechanisms of CD8+ Tregs. It was found that antigen-primed CD8+ Tregs exerted significantly stronger inhibition CD4+ T- and CD19+ B cell proliferation, platelet apoptosis, and platelet associated IgG production in the presence of platelet antigens, while both antigen-primed and naïve CD8+ Tregs could effectively inhibit macrophage mediated phagocytosis of anti-β3 opsonized platelets. Conclusion: To the best of our knowledge, these are the first reported animal models of effective steroid treatment of ITP. Utilizing these models we uncovered a previously unidentified regulatory role of CD8+ T cells in both ITP and steroid treatment. The increased populations of various CD8+ Tregs following β3-/- immunization exerted a significant inhibitory function against other immune-cell mediated anti-platelet responses. In addition, therapeutic administration of both antigen-primed and naïve CD8+ T cells were able to rescue platelet counts in the passive ITP model. This suggests that CD8+ Treg may play a predominantly protective role in ITP. These data provides significant insights into the understanding of immunopathogenesis of ITP, which may be important in designing effective therapy including the potential usage of CD8+ Tregs as a cellular target in the treatment of ITP. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 177 (7) ◽  
pp. 4436-4443 ◽  
Author(s):  
Philip L. Simonian ◽  
Christina L. Roark ◽  
Fernando Diaz del Valle ◽  
Brent E. Palmer ◽  
Ivor S. Douglas ◽  
...  

1998 ◽  
Vol 66 (2) ◽  
pp. 830-834 ◽  
Author(s):  
Ricardo E. Tascon ◽  
Evangelos Stavropoulos ◽  
Katalin V. Lukacs ◽  
M. Joseph Colston

ABSTRACT The role of CD8 T cells in controlling Mycobacterium tuberculosis infections in mice was confirmed by comparing the levels of growth of the organism in control, major histocompatibility complex class II knockout, and athymic mice and by transferring T-cell populations into athymic mice. By using donor mice which were incapable of making gamma interferon (IFN-γ), it was shown that IFN-γ production was essential for CD8 cell mediation of protective immunity against M. tuberculosis.


iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102314
Author(s):  
Nicolas Huot ◽  
Philippe Rascle ◽  
Nicolas Tchitchek ◽  
Benedikt Wimmer ◽  
Caroline Passaes ◽  
...  
Keyword(s):  
T Cells ◽  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2010 ◽  
Vol 23 (4) ◽  
pp. 194-203 ◽  
Author(s):  
Kiyoshi Setoguchi ◽  
Hidehiro Kishimoto ◽  
Sakiko Kobayashi ◽  
Hiroaki Shimmura ◽  
Hideki Ishida ◽  
...  

1995 ◽  
Vol 182 (5) ◽  
pp. 1415-1421 ◽  
Author(s):  
T C Wu ◽  
A Y Huang ◽  
E M Jaffee ◽  
H I Levitsky ◽  
D M Pardoll

Introduction of the B7-1 gene into murine tumor cells can result in rejection of the B7-1 transductants and, in some cases, systemic immunity to subsequent challenge with the nontransduced tumor cells. These effects have been largely attributed to the function of B7-1 as a costimulator in directly activating tumor specific, major histocompatibility class I-restricted CD8+ T cells. We examined the role of B7-1 expression in the direct rejection as well as in the induction of systemic immunity to a nonimmunogenic murine tumor. B-16 melanoma cells with high levels of B7-1 expression did not grow in C57BL/6 recipient mice, while wild-type B-16 cells and cells with low B7-1 expression grew progressively within 21 d. In mixing experiments with B7-1hi and wild-type B-16 cells, tumors grew out in vivo even when a minority of cells were B7-1-. Furthermore, the occasional tumors that grew out after injection of 100% B-16 B7-1hi cells showed markedly decreased B7-1 expression. In vivo antibody depletions showed that NK1.1 and CD8+ T cells, but not CD4+ T cells, were essential for the in vivo rejection of tumors. Animals that rejected B-16 B7-1hi tumors did not develop enhanced systemic immunity against challenge with wild-type B-16 cells. These results suggest that a major role of B7-1 expression by tumors is to mediate direct recognition and killing by natural killer cells. With an intrinsically nonimmunogenic tumor, this direct killing does not lead to enhanced systemic immunity.


Sign in / Sign up

Export Citation Format

Share Document