Therapeutic Effects of ALT-803, an IL-15 Superagonist, in Combination with Anti-CD20 Chimeric Antigen Receptor Modified Expanded Natural Killer CELLS Against Pediatric Burkitt Lymphoma (BL)

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3085-3085 ◽  
Author(s):  
Yaya Chu ◽  
Fangyu Lee ◽  
Janet Ayello ◽  
Brian Hang ◽  
Melanie Zhang ◽  
...  

Abstract Background: The outcome for children with Burkitt lymphoma (BL)has improved significantly but for patients who relapse, the prognosis is dismal due to chemo-immunotherapy resistance (Cairo et al, JCO, 2012, Cairo et al, Blood, 2007). NK cells are bone marrow-derived cytotoxic lymphocytes that play a major role in the rejection of tumors. A variety of activating and inhibitory receptors on the NK cell surface are engaged to regulate NK cell activities and to discriminate target cells from other healthy 'self' cells. However, NK therapy is limited by several factors, including small numbers of active NK cells in unmodified peripheral blood, lack of tumor targeting specificity, and multiple mechanisms of tumor escape of NK cell immunosurveillance. Our group has successfully modified expanded peripheral blood Natural Killer cells (exPBNK) with an anti-CD20 CAR to target rituximab sensitive/resistant CD20+ BL cells in vitro and in NSG mice (Chu/Cairo, et al, Can Imm Res 2015). However, the short lifespan/persistence of adoptively transferred NK cells has limited the therapeutic efficacy. ALT-803 (Altor BioScience Corporation) is a superagonist of an IL-15 variant bound to an IL-15Rα-Fc fusion with enhanced IL-15 biological activity (Zhu et al. 2009 J Immunol), longer half-life and increased potency (Han, et al. Cytokine. 2011). It is currently in several clinical trials in patients with variety of cancers such as refractory indolent non-Hodgkin's lymphoma (NCT02384954). Objective: We hypothesize that ALT-803, IL-15 superagonist complex, promotes exPBNK persistence and significantly enhances the cytotoxicity of anti-CD20 CAR exPBNK against CD20+ BL. Method: PBMCs were expanded with lethally irradiated K562-mbIL21-41BBL cells (Dean Lee et al, PLoS One, 2012). CD56+ CD3- exPBNK cells were isolated using Miltenyi NK cell isolation kit. Anti-CD20-4-1BB-CD3 ζ mRNA (CAR mRNA) was producedin vitro and nucleofected into exPBNK as we have previously described (Chu/Cairo, et al, Can Imm Res 2015). ALT-803 was provided by Altor BioScience Corporation. ExPBNK cells were cultured with 0.35ng/ml or 3.5ng/ml ALT-803. NK proliferation was monitored with MTS assays. NK receptors expression and cytotoxicity were examined by flow cytometry (Chu/Cairo, et al, ASH 2014). NK resistant BL cells Raji and Daudi were used as target cells. Results: % CD56+ CD3- PBNK cells were significantly increased compared to media alone at day 14 (mean 81.85% vs 14.91%, n=3, p<0.001) when co-cultured with the irradiated feeder cell K562-mbIL21-41BBL. The absolute NK numbers were enhanced with irradiated K562-mbIL21-41BBL cells as feeders compared to IL-2 alone after normalized to the INPUT NK cell numbers (mean 2247 fold±293.7 vs 0.516 fold±0.225, n=3, p<0.001) at day 14. Different doses of ALT-803 or IgG were added to the culture medium of purified expanded exPBNK. Proliferation assays were performed at day 3, 7,11, and 17. ALT-803 significantly promoted exPBNK proliferation and persistence compared to IgG in vitro in a dose-dependent manner (A490 reading at 3.5ng/ml dose: ALT803 vs IgG=0.3383+0.009 vs 0.0987+0.0007, P<0.0001 at d17). And ALT-803 significantly enhanced exPBNK cytotoxicity against NK resistant BL cells: Raji (ALT803 vs IgG= 49.54%+2.7% vs 5.99+0.34%, p<0.001, E:T=10:1) and Daudi (ALT803 vs IgG= 63.73%+3.09% vs 2.58+1.96%, p<0.001, E:T=10:1). It also maintained the highcytoxicity of exPBNK at d4, d10 and d18 against Raji (E:T=10:1, d4 vs d10 vs d18=62.07% vs 49.54% vs 61.47%) and against Daudi (E:T=10:1, d4 vs d10 vs d18=76.02% vs 63.73% vs 55%) by maintaining the activating receptors expression such as NKp30, NKp44, and NKp46. Further-more, we demonstrated ALT-803 significantly enhanced the cytotoxicity of anti-CD20 CAR modified exPBNK against Raji (CAR vs MOCK= 81.19%+0.35% vs 66.19+0.94%, p<0.001, E:T=10:1) and Daudi (CAR vs MOCK= 91.41%+0.45% vs 80.56+1.07%, p<0.001, E:T=10:1) compared to mock modified exPBNK. ALT-803 also significantly enhanced the cytotoxicity of anti-CD20 CAR modified exPBNK against NK resistant BL cells: Raji and Daudi compared to anti-CD20 CAR modified exPBNK maintained in medium without ALT803 (Fig.1). Conclusions: ALT-803 maintained the cytotoxicity of exPBNK and in vitro persistence and significantly enhanced anti-CD20 CAR exPBNK cytotoxicity against pediatric NK resistant BL. The in vivo effect of ALT-803 on CAR exPBNK using humanized NSG models is under investigation. Disclosures Wong: Altor BioScience Corporation: Employment, Other: stockholder of Altor Bioscience Corporation. Lee:Intrexon, Ziopharm, Cyto-Sen: Equity Ownership.

1986 ◽  
Vol 163 (4) ◽  
pp. 1012-1017 ◽  
Author(s):  
P D Shah ◽  
J Keij ◽  
S M Gilbertson ◽  
D A Rowley

Cells enriched for NK activity (poly I:C induced, x-ray resistant, and nonadherent), include two phenotypically and functionally different populations. Both populations of NK cells are AGM1+, Ly-1.1-, Ly-2.1-, Ia-, and have the morphology of large granular lymphocytes. One population, however, is Thy-1+ while the second population is Thy-1-. Thy-1+ NK cells lyse YAC-1 and P815 target cells; Thy-1- NK cells lyse YAC-1 but not P815 target cells. The FACS was used to obtain homogeneous populations of Thy-1+ and Thy-1- NK cells, which retain high cytotoxicity. While Thy-1- NK cells suppress the antibody response in vitro by suppressing or eliminating DC, Thy-1+ NK cells do not suppress antibody responses in vitro.


Blood ◽  
2014 ◽  
Vol 123 (5) ◽  
pp. 678-686 ◽  
Author(s):  
Holbrook E. Kohrt ◽  
Ariane Thielens ◽  
Aurelien Marabelle ◽  
Idit Sagiv-Barfi ◽  
Caroline Sola ◽  
...  

Key Points Blockade of inhibitory KIRs with MHC class I antigens on lymphoma cells by anti-KIR antibodies augments NK-cell spontaneous cytotoxicity. In combination with anti-CD20 mAbs, anti-KIR induces enhanced NK cell–mediated, rituximab-dependent cytotoxicity against lymphoma.


2019 ◽  
Vol 5 (10) ◽  
pp. FSO425
Author(s):  
Ricardo García-Muñoz ◽  
María-Josefa Nájera ◽  
Jesús Feliu ◽  
Judith Antón-Remírez ◽  
Enrique Ramalle-Gómara ◽  
...  

Aim: To analyze the effects of subcutaneous or intravenous rituximab + lymphokine-activated killer cells, obinutuzumab or ibrutinib on natural killer (NK) cell levels in chronic lymphocytic leukemia and follicular lymphoma patients. Patients & methods: The distribution of peripheral blood NK cells of 31 patients was analyzed by flow cytometry. Results: We detected a decrease of NK cells in peripheral blood below normal range after obinutuzumab treatment. During maintenance treatment with subcutaneous rituximab, an NK cell reduction was less pronounced than after intravenous rituximab treatment, despite lymphokine-activated killer cell infusions. Conclusion: After one dose of obinutuzumab, each NK cell in peripheral blood destroys 25 leukemic cells.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599 ◽  
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

Abstract The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


2000 ◽  
Vol 191 (8) ◽  
pp. 1341-1354 ◽  
Author(s):  
Hamish R.C. Smith ◽  
Hubert H. Chuang ◽  
Lawrence L. Wang ◽  
Margarita Salcedo ◽  
Jonathan W. Heusel ◽  
...  

Murine natural killer cells (NK) express lectin-like activation and inhibitory receptors, including the CD94/NKG2 family of receptors that bind Qa-1, and the Ly-49 family that recognizes major histocompatibility complex class I molecules. Here, we demonstrate that cross-linking of NK cells with a new specific anti–Ly-49H mAb induced NK cell cytotoxicity and cytokine production. Ly-49H is expressed on a subset of NK cells and can be coexpressed with Ly-49 inhibitory receptors. However, unlike Ly-49 inhibitory receptors, Ly-49H is not detectable on naive splenic CD3+ T cells, indicating that Ly-49H may be an NK cell–specific activation receptor. In further contrast to the stochastically expressed Ly-49 inhibitory receptors, Ly-49H is preferentially expressed with the Ly-49D activation receptor, and expression of both Ly-49H and Ly-49D is augmented on NK cells that lack receptors for Qa-1 tetramers. On developing splenic NK1.1+ cells, Ly-49D and Ly-49H are expressed later than the inhibitory receptors. These results directly demonstrate that Ly-49H activates primary NK cells, and suggest that expression of Ly-49 activation receptors by NK cells may be specifically regulated on NK cell subsets. The simultaneous expression of multiple activation receptors by individual NK cells contrasts with that of T cell antigen receptors and is relevant to the role of NK cells in innate immunity.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1610-1610 ◽  
Author(s):  
Berengere Vire ◽  
Justin SA Perry ◽  
Elinor Lee ◽  
Lawrence S Stennett ◽  
Leigh Samsel ◽  
...  

Abstract Abstract 1610 Poster Board I-636 A major mechanism how the chimeric anti-CD20 monoclonal antibody rituximab (RTX) depletes B-cells is antibody-dependent cellular cytotoxicity (ADCC). ADCC has been modeled in-vitro and in mouse models. However, investigations on ADCC directly in patients treated with RTX are scarce. Recent efforts have focused on improving ADCC through modifications in the Fc binding portion of novel antibodies or through stimulation of effector cell functions with GM-CSF. A more detailed understanding of ADCC as a therapeutic process is needed to optimize such strategies and to identify biomarkers of improved efficacy. Here we report a comprehensive analysis of ADCC in previously untreated CLL patients during the first two RTX infusions (375mg/m2) given in combination with fludarabine every 4 weeks. Following the initial infusion of RTX the absolute lymphocyte count (ALC) decreased by a median of 74% at 2h, followed by a partial recrudescence of cells so that by 24h the median decrease in ALC reached 39% (n=11). ADCC is mediated by effector cells that include NK cells, monocytes/macrophages, and granulocytes. First, we investigated changes in NK cell function: consistent with NK cell activation we found an increase in CD69 at 2, 6 and up to 24h (median 4.2-fold, p=0.005, n=10) after RTX administration and increased expression of the degranulation marker CD107a/b (median 1.9-fold, p<0.001, n=5) and down-regulation of perforin expression (median decrease 63%, p<0.001, n=5) at 4h from treatment start. Activation of NK cells is triggered by the engagement of CD16/FcγRIIIa by RTX coated CLL cells. Interestingly, CD16 expression on NK cells was rapidly lost, already apparent at 2h and maximal at 6h from the start of the RTX infusion (median decrease 82%, p=0.02, n=10) and was not completely recovered by 24h. We also found a significant decrease in expression of CD16 on granulocytes (78%, p<0.001, n=5) but an increase in monocytes (3.9-fold, p<0.001, n=5). In addition to loss of CD16, we found that the cytotoxic capacity of the effector cells was rapidly exhausted: in an oxidative-burst assay, monocytes showed a significant decrease in the production of reactive oxygen species 4h after initiation of RTX infusion (median 60% decrease, p=0.043) and at 6h from the start of the RTX infusion NK cell-mediated killing of K562 target cells was reduced by half (p<0.001, n=3). Interestingly, both the acute reaction to RTX infusions that manifest as a cytokine release syndrome and changes in effector cell function peaked during the first hours of the RTX infusion. We hypothesized that this might be due to the process of CD20 shaving, a rapid and pronounced decrease of CD20 cell surface expression modeled in-vitro and in mice as the result of a mechanism called trogocytosis that relies on the direct and rapid exchange of cell membrane fragments and associated molecules between effectors and target cells (Beum, J Immunol, 2008). First, we used western blot analysis of total CD20 protein in CLL cells and found a rapid loss of CD20 that was apparent already at 2h resulting in virtually complete loss of expression at 24h. Next, we used ImageStream technology to directly visualize ADCC interactions in-vivo. We indeed detected transfer of CD20 from CLL cells to NK cells and monocytes, resulting in complete CD20 loss in circulating CLL cells. While we detected transfer of CD20 into both cell types, monocytes were much more engaged in trogocytosis than NK cells. Consistently, 4h post RTX infusion we found a significant increase in intracellular RTX in granulocytes and monocytes using intracellular staining for human IgG. CD20 shaving appears to be of particular importance given that immunohistochemical analyses revealed that persistent disease in the bone marrow aspirates after 4 cycles of RTX treatment was mostly CD20 negative. Collectively, our results identify loss of CD20 from CLL cells by trogocytosis and exhaustion of immune effector mechanisms as limitations for anti-CD20 immunotherapy. These data identify possible avenues for improving CD20 mediated immunotherapy and characterize endpoints on which different anti-CD20 antibodies can be compared. Given that trogocytosis appears to be a common occurrence our findings likely have general importance to immunotherapy of hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document