Single Cell RNA-Seq Reveals Clonal Consistency and Differential Malignancy in Extramedullary Plasmacytoma of Multiple Myeloma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4808-4808
Author(s):  
Shuang Geng ◽  
Jing Wang ◽  
Mingyi Chen ◽  
Wenming Wang ◽  
Yuhong Pang ◽  
...  

Abstract Extramedullary Plasmacytoma (EMP) is a minor yet devastating metastatic form of Multiple Myeloma (MM), shortening patients' survival from 10 years to 6 months on average. Genetic cause of EMP in MM is yet to be defined. Transcriptome difference between EMP+ patients and EMP- patients is studied here on single cell level by RNA Sequencing (RNA-Seq). We sorted CD38+CD138+ malignant plasma cells from bone marrow and peripheral blood samples by flow cytometry, then picked up single malignant plasma cell and performed single cell RNA-Seq with SmartSeq2 protocol followed by Tn5-based library preparation from bone marrow, peripheral blood and extramedullary tissue of EMP patients. From the single cell RNA-Seq results, in bone marrow we found differential gene expression between EMP+ and EMP- samples, such as CTAG2, STMN1 and RRM2. By comparing circulating malignant plasma cells in PBMC and malignant plasma cell from the sample EMP+ patient, we observed metastatic clone in blood with the same VDJ immunoglobulin heavy chain as in bone marrow. Several genes' expression of these metastatic cells are down-regulated than in bone marrow, such as PAGE2, GTSF1, DICER1. These genes may correlate with egress capability of MM cells into peripheral to become circulating plasma cells (cPCs), and EMP eventually. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5328-5328 ◽  
Author(s):  
Jing Wang ◽  
Shuang Geng ◽  
Yuping Zhong ◽  
Mingyi Chen ◽  
Wenming Wang ◽  
...  

Abstract Objective: To detect the circulating plasma cells (cPCs) in patients of multiple myeloma (MM) with or withoutextramedullary plasmacytoma (EMP). Methods: The 21 patients of MM samples were collected from April 2014 to April 2015. There were 12 males, 9 females, with a median age of 60 (49 to 76 years old). Peripheral blood and bone marrow were examined before treatment or after EMP. Multi parameter flow cytometry (MFC) was used to analyze abnormal plasma cells (tumor cells) in samples of bone marrow and CD138 MACS positive sorting peripheral blood. The antibodies used in the flow cytometry were CD38-APC, CD138-PE, CD81-PE-Cy7, CD45-PacBlue, CD19-Percp-Cy5.5, CD56-mCherry-PE-ef610, CD117-AmCyan, CD16, Zombie-APC-Cy7. Results: In these 21 patients, he ratio of sex is 1.33:1, the median age is 60 (49-76). The immunoglobin type is as follows: IgG κ 7 cases, IgG λ 5 cases, IgG 2 cases, IgA κ 3 cases, IgA λ 2 cases, λ light chain 1 cases. The morphology of bone marrow aspiration showed more than 15% plasma cells and abnormal plasma cells can be seen in bone marrow in cytometry. 9 of 21 patients diagnosed MM with EMP, 2 of them find EMP when initial diagnosis and 7 of them find EMP in the course of disease (6 months to 8 years). The sites of the EMP included head, jaw, chest wall, side of the rib, the soft tissue of the sacral region and the vertebral body and all patients had bone involvement. In 17 patients with complete clinical data, bone marrow and peripheral blood specimens, the cPCs negative rate was 87.5%(7/8) in EMP negative patients, while the cPCs positive rate was 66.7% (6/9) in EMP positive patients, the difference among groups was statistically significant (chi square values: 5.13, p = 0.024). Conclusion: MFC has been widely used in diagnosis and minimal residual disease surveillance of MM, here we established the detection method of cPCs in MM patients, and it is valuable for clinical diagnosis and prognosis judgment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 352-356
Author(s):  
GJ Ruiz-Arguelles ◽  
JA Katzmann ◽  
PR Greipp ◽  
NJ Gonchoroff ◽  
JP Garton ◽  
...  

The bone marrow and peripheral blood of 14 patients with multiple myeloma were studied with murine monoclonal antibodies that identify antigens on plasma cells (R1–3 and OKT10). Peripheral blood lymphocytes expressing plasma cell antigens were found in six cases. Five of these cases expressed the same antigens that were present on the plasma cells in the bone marrow. Patients that showed such peripheral blood involvement were found to have a larger tumor burden and higher bone marrow plasma cell proliferative activity. In some patients, antigens normally found at earlier stages of B cell differentiation (B1, B2, and J5) were expressed by peripheral blood lymphocytes and/or bone marrow plasma cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5050-5050
Author(s):  
Maged Khalil ◽  
Candice Ruby ◽  
Zili He ◽  
Shetra Sivamurthy ◽  
Steier Williams ◽  
...  

Abstract Plasma cell tumors are lymphoid neoplastic proliferations of B cells that may be classified as multiple myeloma (MM), solitary bone plasmacytoma (SBP) and extramedullary plasmacytoma (EMP). The extramedullary plasmacytoma account for 1–2% of the total number of plasma-cell growths of which 80 % are originated on the head and neck and upper airways. Males are more frequently affected at sixth-seventh decade. Herein we are presenting a case of 51 years old male with synchronous multiple extramedullary plasmacytomas involving lung, stomach and spine, Presentation of a case 51 years old black male from St. Lucia with no significant past medical history, presented to the local hospital in St. Lucia with hematemesis. Endoscopy was performed and a growth in the stomach was found. He came to the US for treatment. When seen in our hospital, patient complained of black tarry stool, severe right sided chest pain radiating to the back, generalized body aches, fatigue and 10 Lbs. weight loss within the last 2 months Physical examination: revealed tenderness on the right side of chest and back, and decreased breath sound on the righ upper lobe, otherwise unremarkable Work up including CT scan of the chest/abdomen /pelvis showed an irregular right apical mass posteriorly with destruction of the adjacent second and third ribs posteriorly and in T2 and T3 vertebrae, diffuse lytic lesions involving the spines, sacrum, ribs and sternum. There was also a large irregular soft tissue mass the posterior aspect of the fundus of the stomach. Liver, spleen and lymph nodes were normal. Laboratory studies showed WBCs 9.8, Hg 6.9, Platlets 218, BUN 71, Cr. 5.2, Ca 13.4, albumin 3.4, B2 microglobulin 7.5, TP 11.4, LDH 1063, LFT’s all normal, Cea 00 ng/ml, AFP 6.0 ng/ml, Ca19-9 9.4 U/ml, PSA.97 ng/ml, iron study, folate, B12 all within normal range, serum protein electropheresis and immunofixation showed monoclonal spike in the Gamma region 53.8% (IgG Kappa and IgA Kappa), IgG 10917 mg/dl, IgA 85 mg/dl, IgM 16 mg/dl, urine protien elctrophersis showed 88 mg/dl M-spike in beta region, 24 hours urine was 2400 mg/24 h Bone marrow biopsy showed extensive infiltration with poorly differentiated plasma cells, flow cytometry consistent with plasma cell neoplasm, cytogenetics and FISH did not show any evidence of chromosome 13 deletion or trisomy 11. Gastric mass biopsy and lung mass biopsy showed plasma cells similar to the bone marrow infiltrate consistent with plasmacytoma. Diagnosis of multiple myeloma and multiple extramedullary plasmacytomas were made. Plasmaphersis was started because of worsening renal function despite aggressive hydration. Kidney function and calcium level normalized after 5 sessions of Plasmaphersis. Chemotherapy with Doxil, Vincrestine and dexamethasone (DVd) was started. Because of the persistent drop in hemoglobin from gastric mass bleeding, Radiation therapy to the gastric area was given (2300 cGy in 4 weeks) While on treatment he developed severe bilateral lower extremities weakness, MRI showed 8 cm epidural mass at the T8 level, the field of radiation was increased to include the new lesion along with Decadron. He developed severe oral mucositis, esophagitis pancytopenia, continue to bleed from the gastric mass, and finally developed an overwhelming VRE sepsis and shock. He was transferred to MICU and expired despite aggressive supportive care. Conclusion: MM can present as multiple extramedullary plasmacytomas. The response to chemotherapy is very poor The prognosis is very poor,


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5338-5338
Author(s):  
Finella MC Brito-Babapulle ◽  
Tanya Cranfield ◽  
Robert B Corser ◽  
Helen Dignum ◽  
Christopher James ◽  
...  

Abstract Mouse eosinophils have been shown in 2011 to be required for the maintenance of long lasting plasma cells in the bone marrow and in maintaining the bone marrow plasma cell microenvironment. Human eosinophils have been shown by Wong et al to support multiple myeloma cell proliferation via a mechanism independent of IL6. We looked at bone marrow biopsies taken from patients who had a paraprotein and in whom a diagnosis of multiple myeloma was suspected. These samples were taken solely for the purposes of diagnosisng multiple myeloma and were retrospectively reviewed from the point of view of degree of eosinophil infiltration and its correlation with tumour load, bone lytic lesions, plasma cell morphology, whether blastic, crystalline inclusions, Mott cells, flame cells and or lymphoplasmacytoid. There were no cases of IGD or E myeloma or osteosclerotic myeloma.Nonsecretory myeloma and cases of light chain myeloma with or without amyloid were included in the series. Biopsies were not performed from osteolytic lesion unless biopsy was necessary to make a diagnosis of myeloma. Myeloma was diagnosed when plasma cell infiltrate was greater than 10% on bone marrow aspirate with a paraprotein and or lytic lesions. Eosinophil infiltration did not correlate with any of the tumour clinicopathological markers but showed an inverse correlation with degree of plasmacytosis. Eosinophils were hardly ever found in marrow aspirates that had over 70% plasma cells. They were usually found in trephine sections of bone marrow in areas where there was Grade I/II fibrosis and were often found in close proximity to focal areas of plasma cell infiltration. Whether eosinophils play a role in preventing or maintaining malignant plasma cell recurrence is currently being studied. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 352-356 ◽  
Author(s):  
GJ Ruiz-Arguelles ◽  
JA Katzmann ◽  
PR Greipp ◽  
NJ Gonchoroff ◽  
JP Garton ◽  
...  

Abstract The bone marrow and peripheral blood of 14 patients with multiple myeloma were studied with murine monoclonal antibodies that identify antigens on plasma cells (R1–3 and OKT10). Peripheral blood lymphocytes expressing plasma cell antigens were found in six cases. Five of these cases expressed the same antigens that were present on the plasma cells in the bone marrow. Patients that showed such peripheral blood involvement were found to have a larger tumor burden and higher bone marrow plasma cell proliferative activity. In some patients, antigens normally found at earlier stages of B cell differentiation (B1, B2, and J5) were expressed by peripheral blood lymphocytes and/or bone marrow plasma cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Zeinab A. Issa ◽  
Mira S. Zantout ◽  
Sami T. Azar

Multiple myeloma is a malignant plasma cell disorder that accounts for approximately 10% of all hematologic cancers. It is characterized by accumulation of clonal plasma cells, predominantly in the bone marrow. The prevalence of type 2 diabetes is increasing; therefore, it is expected that there will be an increase in the diagnosis of multiple myeloma with concomitant diabetes mellitus. The treatment of multiple myeloma and diabetes mellitus is multifaceted. The coexistence of the two conditions in a patient forms a major challenge for physicians.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2880-2880
Author(s):  
Prashant Ramesh Tembhare ◽  
Constance Yuan ◽  
Neha Korde ◽  
Irina Maric ◽  
Katherine Calvo ◽  
...  

Abstract Abstract 2880 Background: The percent abnormal plasma cells (aPC) as determined by flow cytometry (FC) has been shown to be an independent risk factor for progression from myeloma precursor disease (monoclonal gammopathy of uncertain significance, MGUS; smoldering multiple myeloma, SMM) to multiple myeloma (MM). However, differentiation of aPCs from normal PCs (nPCs) in these patients is challenging. MM cell lines are know to underexpress the tetraspanin proteins (e.g. CD81, CD82) in comparison to nPCs. Although CD81, a nonglycosylated tetraspanin, is robustly expressed on the surface of nPCs, little information is available regarding its expression in the aPCs of MM, SMM and MGUS. In this study we evaluate the expression of CD81 in conjunction with CD19, CD45 and CD56 in bone marrow aPCs and nPCs from patients with MM, SMM and MGUS. Methods: Bone marrow aspirates from 41 patients (9 MGUS, 22 SMM, 7 MM, 3 non-neoplastic with clinical suspicion of MGUS) were analyzed with 8-color multiparametric FC using a panel of antibodies (CD138, CD38, CD19, CD20, CD27, CD28, CD45, CD56, CD81, CD13, CD14, CD16, CD3, CD34 and intracellular kappa & lambda light chains). The pattern of surface antigen and intracellular light chain expression was utilized to determine the percent aPC (defined as monoclonal with aberrant antigen expression) and percent nPC (defined as polyclonal with normal antigen expression). In all cases the pattern of antigen expression was evaluated in the aPCs; additionally, in cases with greater than 5% nPCs (19/41 patients: 8 MGUS, 8 SMM and 3 non-neoplastic) the pattern of antigen expression was evaluated in the nPCs. The ability to detect clonal aPC by evaluation of FC pattern of antigen expression was determined and compared for CD19, CD45, CD56 and CD81. We also examined the sensitivity and specificity of the CD19 and CD81 combination verses the conventional combination of CD19, CD56 and CD45 (Perez-Persona et al, Blood 2007) for the detection of clonal aPC. Results: CD81 was strongly expressed by nPC (average mean fluorescent intensity (MFI): 11500, standard deviation (SD): 5061, range: 5347–21657) in contrast to aPC with abnormally weak expression (average MFI: 1487, SD: 887, range: 647–4311). CD81 was a highly reliable marker for the detection of clonal PC; with 90% sensitivity and 100% specificity. It was the most specific and second most sensitive marker in our study (Table 1). CD81 was equally sensitive in detection of aPCs in MGUS, SMM and MM. Evaluation of the combined pattern of expression of CD19 and CD81 resulted in 100% sensitivity and 100% specificity for detection of aPC, which is greater than the conventional combination of CD19, CD56 and CD45, yielding 100% sensitivity but 90% specificity, for diagnostic evaluation of aPC. Conclusions: CD81 is a highly reliable marker in the detection of abnormal plasma cells in MM, SMM and MGUS. The combined approach of CD19 and CD81 is superior to other conventional marker combinations (i.e. CD19, CD45, and CD56) in terms of detection of clonal plasma cells and may replace their use in the clinical evaluation of bone marrow aspirates for plasma cell processes. Furthermore, it should help widening the applicability of minimal residual disease testing in MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1922-1930 ◽  
Author(s):  
T Goto ◽  
SJ Kennel ◽  
M Abe ◽  
M Takishita ◽  
M Kosaka ◽  
...  

Abstract A monoclonal antibody (MoAb) that defines a novel terminal B-cell- restricted antigen, termed HM1.24, was developed against a human plasma cell line. The MoAb, designated anti-HM1.24, reacted with five different human myeloma cell lines, as well as with monoclonal neoplastic plasma cells obtained from the bone marrow or peripheral blood of patients with multiple myeloma or Waldenstrom's macroglobulinemia. The HM1.24 antigen was also expressed by mature Ig- secreting B cells (plasma cells and lymphoplasmacytoid cells) but not by other cells contained in the peripheral blood, bone marrow, liver, spleen, kidney, or heart of normal individuals or patients with non- plasma-cell-related malignancies. The anti-HM1.24 MoAb bound to human myeloma RPMI 8226 cells with an affinity constant of 9.2 x 10(8) M-1, indicating approximately 84,000 sites/cell. By immunoprecipitation assay under reducing conditions, this MoAb identified a membrane glycoprotein that had a molecular weight of 29 to 33 kD. Our studies indicate that the HM1.24-related protein represents a specific marker of late-stage B-cell maturation and potentially serves as a target antigen for the immunotherapy of multiple myeloma and related plasma cell dyscrasias.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1922-1930 ◽  
Author(s):  
T Goto ◽  
SJ Kennel ◽  
M Abe ◽  
M Takishita ◽  
M Kosaka ◽  
...  

A monoclonal antibody (MoAb) that defines a novel terminal B-cell- restricted antigen, termed HM1.24, was developed against a human plasma cell line. The MoAb, designated anti-HM1.24, reacted with five different human myeloma cell lines, as well as with monoclonal neoplastic plasma cells obtained from the bone marrow or peripheral blood of patients with multiple myeloma or Waldenstrom's macroglobulinemia. The HM1.24 antigen was also expressed by mature Ig- secreting B cells (plasma cells and lymphoplasmacytoid cells) but not by other cells contained in the peripheral blood, bone marrow, liver, spleen, kidney, or heart of normal individuals or patients with non- plasma-cell-related malignancies. The anti-HM1.24 MoAb bound to human myeloma RPMI 8226 cells with an affinity constant of 9.2 x 10(8) M-1, indicating approximately 84,000 sites/cell. By immunoprecipitation assay under reducing conditions, this MoAb identified a membrane glycoprotein that had a molecular weight of 29 to 33 kD. Our studies indicate that the HM1.24-related protein represents a specific marker of late-stage B-cell maturation and potentially serves as a target antigen for the immunotherapy of multiple myeloma and related plasma cell dyscrasias.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1782-1782
Author(s):  
Sheri Skerget ◽  
Austin Christofferson ◽  
Sara Nasser ◽  
Christophe Legendre ◽  
The MMRF CoMMpass Network ◽  
...  

Plasma cell leukemia (PCL) is rare but represents an aggressive, advanced form of multiple myeloma (MM) where neoplastic plasma cells (PCs) escape the bone marrow (BM) and circulate in the peripheral blood (PB). Traditionally, PCL is defined by the presence of >20% circulating plasma cells (CPCs), however, recent studies have suggested that PCL be redefined as the presence of >5% CPCs. The Multiple Myeloma Research Foundation CoMMpass study (NCT01454297) is a longitudinal, observational clinical study with 1143 newly diagnosed MM patients. BM-derived MM samples were characterized using whole genome (WGS), exome (WES), and RNA (RNAseq) sequencing at diagnosis and each progression event. When >5% CPCs were detected by flow cytometry, PCs were enriched independently from both compartments, and T-cells were selected from the PB as a control for WGS and WES. This substudy within CoMMpass provides the largest, most comprehensively characterized dataset of matched MM and PCL samples to date, which can be leveraged to better understand the molecular drivers of PCL. At diagnosis, 813/1143 CoMMpass patients had flow cytometry data reporting the percent PCs in PB, of which 790 had <5%, 17 had 5-20%, and 6 had >20% CPCs. Survival analyses revealed that patients with 5-20% CPCs (median = 20 months) had poor overall survival (OS) outcomes compared to patients with <5% CPCs (median = 74 months, p < 0.001), and no significant difference in outcome was observed between patients with 5-20% and >20% (median = 38 months) CPCs. Patients with 1-5% CPCs (median = 50 months, HR = 2.45, 95% CI = 1.64 - 3.69, p < 0.001) also exhibited poor OS outcomes compared to patients with <1% CPCs (median = 74 months), suggesting that patients with >1% CPCs are a higher risk population, even if they do not meet the PCL threshold. Using a cutoff of >5% CPCs, 23/813 (2.8%) patients presented with primary PCL (pPCL) at diagnosis. Of these patients, 7 (30%) were hyperdiploid (HRD), of whom 1 had a CCND1 and 1 had a MYC translocation; while 16 (70%) were nonhyperdiploid (NHRD), all of whom had a canonical immunoglobulin translocation (6 CCND1, 5 WHSC1, 3 MAF, 1 MAFA, and 1 MAFB). Of 124 patients with serial sample collections, 5 (4%) patients without pPCL had >5% CPCs at progression, and thus relapsed with secondary PCL (sPCL). Of the 5 sPCL patients, 2 (40%) were NHRD with a CCND1 or MAF translocation; while 3 (60%) were HRD, 1 with a WHSC1 translocation. Median time to diagnosis of sPCL was 22 months (range = 2 - 31 months), and patients with sPCL (median = 22 months) and pPCL (median = 30 months) exhibited poor OS outcomes as compared to MM patients (74 months, p < 0.001). Sequencing data was available for 15 pPCL and 5 sPCL samples. For 12 patients with WES, WGS, and RNAseq performed on their PCL tumor sample, an integrated analysis identified recurrent, complete loss-of-function (LOF) events in only CDKN2C/FAF1, SETD2, and TRAF3. Five pPCL patients had complete LOF of a gene involved in G1/S cell cycle control, including CDKN2C, CDKN2A, CDKN1C, and ATM. These LOF events were not observed in NHRD t(11;14) PCL patients, suggesting that CCND1 overexpression and LOF of genes involved in G1/S cell cycle control may represent independent drivers of PCL. Comparing WES and WGS data between matched MM and PCL tumor samples revealed a high degree of similarity in mutation and copy number profile. However, differential expression analysis performed for 13 patients with RNAseq data comparing their MM and PCL tumors revealed 27 up- and 39 downregulated genes (padj < 0.01, FDR = 0.1) in PCL versus MM. Pathway analysis revealed an enrichment (p < 0.001) for genes involved in adhesion and diapedesis, including upregulation of ITGB2, PF4, and PPBP, and downregulation of CCL8, CXCL12, MMP19, and VCAM1. The most significantly downregulated gene in PCL (log2FC = -6.98) was VCAM1, which plays a role in cell adhesion, and where loss of expression (TPM < 0.01) was observed across all PCL samples. Upregulation of four S100 genes including S100A8, S100A9, S100A12, and S100P, which have been implicated in tumor growth, metastasis, and immune evasion, was also observed in PCL. Interestingly, a S100A9 inhibitor has been developed and may represent a novel treatment option for PCL patients. In summary, PCL was found to be associated with molecular events dysregulating G1/S cell cycle control coupled with subtle changes in transcription that likely occur in a subclonal population of the MM tumor. Disclosures Lonial: Genentech: Consultancy; GSK: Consultancy; BMS: Consultancy; Janssen: Consultancy, Research Funding; Karyopharm: Consultancy; Takeda: Consultancy, Research Funding; Celgene Corporation: Consultancy, Research Funding; Amgen: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document