target antigen
Recently Published Documents


TOTAL DOCUMENTS

682
(FIVE YEARS 190)

H-INDEX

62
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Vardges Tserunyan ◽  
Stacey D Finley

In recent decades, chimeric antigen receptors (CARs) have been successfully used to generate engineered T cells capable of recognizing and eliminating cancer cells. The structure of CARs frequently includes costimulatory domains, which enhance the T cell response upon antigen encounter. However, it is not fully known how the CAR co-stimulatory domains influence T cell activation in the presence of biological variability. In this work, we used mathematical modeling to elucidate how the inclusion of one such co-stimulatory molecule, CD28, impacts the response of a population of engineered T cells under different sources of variability. Particularly, our simulations demonstrate that CD28-bearing CARs mediate a faster and more consistent population response under both target antigen variability and kinetic rate variability. We identify kinetic parameters that have the most impact on mediating cell activation. Finally, based on our findings, we propose that enhancing the catalytic activity of lymphocyte-specific protein tyrosine kinase (LCK) can result in drastically reduced and more consistent response times among heterogeneous CAR T cell populations.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262169
Author(s):  
Sebastian Havervall ◽  
August Jernbom Falk ◽  
Jonas Klingström ◽  
Henry Ng ◽  
Nina Greilert-Norin ◽  
...  

Current SARS-CoV-2 serological assays generate discrepant results, and the longitudinal characteristics of antibodies targeting various antigens after asymptomatic to mild COVID-19 are yet to be established. This longitudinal cohort study including 1965 healthcare workers, of which 381 participants exhibited antibodies against the SARS-CoV-2 spike antigen at study inclusion, reveal that these antibodies remain detectable in most participants, 96%, at least four months post infection, despite having had no or mild symptoms. Virus neutralization capacity was confirmed by microneutralization assay in 91% of study participants at least four months post infection. Contrary to antibodies targeting the spike protein, antibodies against the nucleocapsid protein were only detected in 80% of previously anti-nucleocapsid IgG positive healthcare workers. Both anti-spike and anti-nucleocapsid IgG levels were significantly higher in previously hospitalized COVID-19 patients four months post infection than in healthcare workers four months post infection (p = 2*10−23 and 2*10−13 respectively). Although the magnitude of humoral response was associated with disease severity, our findings support a durable and functional humoral response after SARS-CoV-2 infection even after no or mild symptoms. We further demonstrate differences in antibody kinetics depending on the antigen, arguing against the use of the nucleocapsid protein as target antigen in population-based SARS-CoV-2 serological surveys.


2022 ◽  
Vol 9 ◽  
Author(s):  
Baubek Spanov ◽  
Victoria Aboagye ◽  
Oladapo Olaleye ◽  
Natalia Govorukhina ◽  
Nico C. van de Merbel ◽  
...  

Asparagine deamidation and aspartic acid isomerization in the complementarity determining regions (CDRs) of monoclonal antibodies may alter their affinity to the target antigen. Trastuzumab has two hot spots for deamidation and one position for isomerization in the CDRs. Little is known how complex formation with its target antigen HER2 affects these modifications. Modifications in the CDRs of trastuzumab were thus compared between the free antibody and the trastuzumab–HER2 complex when stressed under physiological conditions at 37°C. Complex formation and stability of the complex upon stressing were assessed by size-exclusion chromatography. Deamidation of light-chain Asn-30 (Lc-Asn-30) was extensive when trastuzumab was stressed free but reduced about 10-fold when the antibody was stressed in complex with HER2. Almost no deamidation of heavy-chain (Hc-Asn-55) was detected in the trastuzumab–HER2 complex, while deamidation was observed when the antibody was stressed alone. Hc-Asp-102 isomerization, a modification that critically affects biological activity, was observed to a moderate degree when the free antibody was stressed but was not detected at all in the trastuzumab–HER2 complex. This shows that complex formation has a major influence on critical modifications in the CDRs of trastuzumab.


2021 ◽  
Vol 23 (1) ◽  
pp. 405
Author(s):  
Emanuela Guerra ◽  
Roberta Di Pietro ◽  
Mariangela Basile ◽  
Marco Trerotola ◽  
Saverio Alberti

Chimeric antigen receptor (CAR) therapy is based on patient blood-derived T cells and natural killer cells, which are engineered in vitro to recognize a target antigen in cancer cells. Most CAR-T recognize target antigens through immunoglobulin antigen-binding regions. Hence, CAR-T cells do not require the major histocompatibility complex presentation of a target peptide. CAR-T therapy has been tremendously successful in the treatment of leukemias. On the other hand, the clinical efficacy of CAR-T cells is rarely detected against solid tumors. CAR-T-cell therapy of cancer faces many hurdles, starting from the administration of engineered cells, wherein CAR-T cells must encounter the correct chemotactic signals to traffic to the tumor in sufficient numbers. Additional obstacles arise from the hostile environment that cancers provide to CAR-T cells. Intense efforts have gone into tackling these pitfalls. However, we argue that some CAR-engineering strategies may risk missing the bigger picture, i.e., that a successful CAR-T-cell therapy must efficiently intertwine with the complex and heterogeneous responses that the body has already mounted against the tumor. Recent findings lend support to this model.


2021 ◽  
Author(s):  
Nikhil K. Tulsian ◽  
Palur V. Raghuvamsi ◽  
Xinlei Qian ◽  
Gu Yue ◽  
Bhuvaneshwari D/O Shunmuganathan ◽  
...  

AbstractPrevious studies on the structural relationship between human antibodies and SARS-CoV-2 have focused on generating static snapshots of antibody complexes with the Spike trimer. However, antibody-antigen interactions are dynamic, with significant binding-induced allosteric effects on conformations of antibody and its target antigen. In this study, we employ hydrogen-deuterium exchange mass spectrometry, in vitro assays, and molecular dynamics simulations to investigate the allosteric perturbations linked to binding events between a group of human antibodies with differential functional activities, and the Spike trimer from SARS-CoV-2. Our investigations have revealed key dynamic features that define weakly or moderately neutralizing antibodies versus those with strong neutralizing activity. These results provide mechanistic insights into the functional modes of human antibodies against COVID-19, and provide a rationale for effective antiviral strategies.TeaserDifferent neutralizing antibodies induce site-specific allosteric effects across SARS-CoV-2 Spike protein


2021 ◽  
Vol 12 ◽  
Author(s):  
Yinyin Zhang ◽  
Yingmei Li ◽  
Weijie Cao ◽  
Fang Wang ◽  
Xinsheng Xie ◽  
...  

Cellular immunotherapy represented by CD19-directed chimeric antigen receptor T (CAR-T) cells has achieved great success in recent years. An increasing number of CAR-T therapies are being developed for cancer treatment, but the frequent and varied adverse events, such as “on-target, off-tumor toxicity”, limit CAR-T application. Here, we identify the target antigen expression patterns of CAR therapies in 18 tissues and organs (peripheral blood mononuclear cells, bone marrow, lymph nodes, spleen, heart, ascending aortic tissue, trachea, lung, skin, kidney, bladder, esophagus, stomach, small intestine, rectum, liver, common bile duct, and pancreas) from healthy human samples. The atlas determines target antigens expressed on some normal cell types, which facilitates elucidating the cause of “on-target, off-tumor toxicity” in special tissues and organs by targeting some antigens, but not others. Moreover, we describe the target antigen expression patterns of B-lineage-derived malignant cells, acute myeloid leukemia (AML), and solid tumors. Overall, the present study indicates the pathogenesis of “on-target, off-tumor toxicity” during CAR therapies and provides guidance on taking preventive measures during CAR treatment.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6157
Author(s):  
Marius Maucher ◽  
Micha Srour ◽  
Sophia Danhof ◽  
Hermann Einsele ◽  
Michael Hudecek ◽  
...  

Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2097
Author(s):  
Hiroki Tanaka ◽  
Ryo Miyama ◽  
Yu Sakurai ◽  
Shinya Tamagawa ◽  
Yuta Nakai ◽  
...  

(1) Background: T cells are important target cells, since they exert direct cytotoxic effects on infected/malignant cells, and affect the regulatory functions of other immune cells in a target antigen-specific manner. One of the current approaches for modifying the function of T cells is gene transfection by viral vectors. However, the insertion of the exogenous DNA molecules into the genome is attended by the risk of mutagenesis, especially when a transposon-based gene cassette is used. Based on this scenario, the transient expression of proteins by an in vitro-transcribed messenger RNA (IVT-mRNA) has become a subject of interest. The use of lipid nanoparticles (LNPs) for the transfection of IVT-mRNA is one of the more promising strategies for introducing exogenous genes. In this study, we report on the development of LNPs with transfection efficiencies that are comparable to that for electroporation in a T cell line (Jurkat cells). (2) Methods: Transfection efficiency was improved by optimizing the phospholipids and polyethylene glycol (PEG)-conjugated lipid components. (3) Results: Modification of the lipid composition resulted in the 221-fold increase in luciferase activity compared to a previously optimized formulation. Such a high transfection activity was due to the efficient uptake by clathrin/dynamin-dependent endocytosis and the relatively efficient escape into the cytoplasm at an early stage of endocytosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amar K. Garg ◽  
Soumya Mittal ◽  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra M. Dixit

The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine dosage and the interval between the prime and boost doses. Unexpectedly, lower dose prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To elucidate the origins of these effects, we developed a stochastic simulation model of the germinal center (GC) reaction and predicted the antibody responses elicited by different vaccination protocols. The simulations predicted that a lower dose prime could increase the selection stringency in GCs due to reduced antigen availability, resulting in the selection of GC B cells with higher affinities for the target antigen. The boost could relax this selection stringency and allow the expansion of the higher affinity GC B cells selected, improving the overall response. With a longer dosing interval, the decay in the antigen with time following the prime could further increase the selection stringency, amplifying this effect. The effect remained in our simulations even when new GCs following the boost had to be seeded by memory B cells formed following the prime. These predictions offer a plausible explanation of the observed paradoxical effects of dosage and dosing interval on vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages and dosing intervals as handles may help improve vaccine efficacies.


2021 ◽  
Vol 118 (49) ◽  
pp. e2026763118
Author(s):  
Hisato Iriki ◽  
Hayato Takahashi ◽  
Naoko Wada ◽  
Hisashi Nomura ◽  
Miho Mukai ◽  
...  

Antigen-specific peripheral tolerance is crucial to prevent the development of organ-specific autoimmunity. However, its function decoupled from thymic tolerance remains unclear. We used desmoglein 3 (Dsg3), a pemphigus antigen expressed in keratinocytes, to analyze peripheral tolerance under physiological antigen-expression conditions. Dsg3-deficient thymi were transplanted into athymic mice to create a unique condition in which Dsg3 was expressed only in peripheral tissue but not in the thymus. When bone marrow transfer was conducted from high-avidity Dsg3-specific T cell receptor–transgenic mice to thymus-transplanted mice, Dsg3-specific CD4+ T cells developed in the transplanted thymus but subsequently disappeared in the periphery. Additionally, when Dsg3-specific T cells developed in Dsg3−/− mice were adoptively transferred into Dsg3-sufficient recipients, the T cells disappeared in an antigen-specific manner without inducing autoimmune dermatitis. However, Dsg3-specific T cells overcame this disappearance and thus induced autoimmune dermatitis in Treg-ablated recipients but not in Foxp3-mutant recipients with dysfunctional Tregs. The molecules involved in disappearance were sought by screening the transcriptomes of wild-type and Foxp3-mutant Tregs. OX40 of Tregs was suggested to be responsible. Consistently, when OX40 expression of Tregs was constrained, Dsg3-specific T cells did not disappear. Furthermore, Tregs obtained OX40L from dendritic cells in an OX40-dependent manner in vitro and then suppressed OX40L expression in dendritic cells and Birc5 expression in Dsg3-specific T cells in vivo. Lastly, CRISPR/Cas9-mediated knockout of OX40 signaling in Dsg3-specific T cells restored their disappearance in Treg-ablated recipients. Thus, Treg-mediated peripheral deletion of autoreactive T cells operates as an OX40-dependent regulatory mechanism to avoid undesired autoimmunity besides thymic tolerance.


Sign in / Sign up

Export Citation Format

Share Document