scholarly journals Stabilization of thrombin-activated porcine factor VIII:C by factor IXa phospholipid

Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1303-1308 ◽  
Author(s):  
P Lollar ◽  
GJ Knutson ◽  
DN Fass

The activation of porcine factor X by an enzymatic complex consisting of activated factor IX (factor IXa), thrombin-activated factor VIII:C (factor VIII:Ca), phospholipid vesicles, and calcium was studied in the presence of an irreversible inhibitor of factor Xa, 5-dimethylamino- naphthalene-1-sulfonyl-glutamyl-glycyl-arginyl- chloro met hyl ketone ( DEGR -CK). The formation of factor Xa was measured continuously by monitoring the increase in solution fluorescence intensity that occurs upon formation of DEGR -factor Xa. Omission of any component from the enzymatic complex reduced the reaction rate to a negligible level. In the presence of fixed excess factor IXa, the velocity of factor X activation was linearly dependent on the concentration of factor VIII:C, and thus, provided a plasma-free assay of factor VIII:C. Activation of factor VIII:C by 0.1 NIH U/ml thrombin in the presence of factor IXa, phospholipid vesicles, and calcium, followed at variable time intervals by the addition of factor X and DEGR -CK, was complete within 5 min, as judged by the fluorometric assay, and resulted in little or no loss of factor VIII:C activity over a period of 20 min; whereas, activation in the absence of either IXa or phospholipid vesicles decreased the half-life of factor VIII:C to approximately 5 min. Analysis of 125I-factor VIII:C-derived activation peptides by sodium dodecyl sulfate polyacrylamide gel radioelectrophoresis revealed identical results, regardless of whether factor IXa and/or phospholipid vesicles were included in the activation, suggesting that the lability of factor VIII:Ca is not due to a major alteration of its primary structure. We conclude that the activated porcine factor VIII:C molecule is stabilized markedly because of its interaction with factor IXa and phospholipid.

Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1303-1308 ◽  
Author(s):  
P Lollar ◽  
GJ Knutson ◽  
DN Fass

Abstract The activation of porcine factor X by an enzymatic complex consisting of activated factor IX (factor IXa), thrombin-activated factor VIII:C (factor VIII:Ca), phospholipid vesicles, and calcium was studied in the presence of an irreversible inhibitor of factor Xa, 5-dimethylamino- naphthalene-1-sulfonyl-glutamyl-glycyl-arginyl- chloro met hyl ketone ( DEGR -CK). The formation of factor Xa was measured continuously by monitoring the increase in solution fluorescence intensity that occurs upon formation of DEGR -factor Xa. Omission of any component from the enzymatic complex reduced the reaction rate to a negligible level. In the presence of fixed excess factor IXa, the velocity of factor X activation was linearly dependent on the concentration of factor VIII:C, and thus, provided a plasma-free assay of factor VIII:C. Activation of factor VIII:C by 0.1 NIH U/ml thrombin in the presence of factor IXa, phospholipid vesicles, and calcium, followed at variable time intervals by the addition of factor X and DEGR -CK, was complete within 5 min, as judged by the fluorometric assay, and resulted in little or no loss of factor VIII:C activity over a period of 20 min; whereas, activation in the absence of either IXa or phospholipid vesicles decreased the half-life of factor VIII:C to approximately 5 min. Analysis of 125I-factor VIII:C-derived activation peptides by sodium dodecyl sulfate polyacrylamide gel radioelectrophoresis revealed identical results, regardless of whether factor IXa and/or phospholipid vesicles were included in the activation, suggesting that the lability of factor VIII:Ca is not due to a major alteration of its primary structure. We conclude that the activated porcine factor VIII:C molecule is stabilized markedly because of its interaction with factor IXa and phospholipid.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
TB McNeely ◽  
MJ Griffith

Abstract The effects of heparin on the activation of blood coagulation factors IX and X in contact-activated plasma were determined in the present study. In the presence and absence of 0.5 U/mL heparin, the amounts of factor IX that were cleaved 30 minutes after the addition of calcium and phospholipid to plasma exposed to glass (ie, contact activated) were essentially identical. In the absence of heparin, however, the plasma clotting time was between three and four minutes, while in the presence of heparin, the clotting time was approximately 40 minutes. More factor IXa was inhibited by antithrombin III in the presence of heparin than in its absence, but factor IXa levels sufficient for factor X activation appeared to be present in the heparinized plasma. Neither an increase in factor Xa nor a decrease in factor X was detected, however, in heparinized plasma. We conclude that the step in the intrinsic pathway of coagulation that is inhibited in the presence of heparin is at the level of factor X activation.


Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1028-1038 ◽  
Author(s):  
MB Hultin

Abstract The precise quantitation of activated factors in human factor IX concentrates has been accomplished with the use of recently developed, specific assays for factors IXa, Xa, and thrombin. The assay for factor IXa, which measures the initial rate of 3H-factor-X activation, was shown to be specific for factor IXa in the concentrates. Activated factor IX concentrates contained 1.0–2.3 microgram/ml of factor IXa; whereas the assays of unactivated concentrates were negative (less than 0.2 microgram/ml). The assays of factor Xa and thrombin, which measure the initial rate of p-nitroaniline release from S-2222 and S-2238, respectively, showed similar small amounts of factor Xa (4–34 ng/ml) and thrombin (12–76 ng/ml) in the activated and unactivated concentrates. The nonactivated partial thromboplastin time of the concentrates correlated significantly with the factor IXa content, but not with factor Xa or thrombin. Antithrombin III antigen in 3 of 4 concentrates was several-fold higher than antithrombin III activity, suggesting the presence of antithrombin III complexed with activated factors. These results support the hypothesis that the degree of activation of factor IX concentrates is related primarily to the concentration of factor IXa, which may be responsible for the thrombogenicity of these concentrates in some clinical settings.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

Abstract To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1028-1038 ◽  
Author(s):  
MB Hultin

The precise quantitation of activated factors in human factor IX concentrates has been accomplished with the use of recently developed, specific assays for factors IXa, Xa, and thrombin. The assay for factor IXa, which measures the initial rate of 3H-factor-X activation, was shown to be specific for factor IXa in the concentrates. Activated factor IX concentrates contained 1.0–2.3 microgram/ml of factor IXa; whereas the assays of unactivated concentrates were negative (less than 0.2 microgram/ml). The assays of factor Xa and thrombin, which measure the initial rate of p-nitroaniline release from S-2222 and S-2238, respectively, showed similar small amounts of factor Xa (4–34 ng/ml) and thrombin (12–76 ng/ml) in the activated and unactivated concentrates. The nonactivated partial thromboplastin time of the concentrates correlated significantly with the factor IXa content, but not with factor Xa or thrombin. Antithrombin III antigen in 3 of 4 concentrates was several-fold higher than antithrombin III activity, suggesting the presence of antithrombin III complexed with activated factors. These results support the hypothesis that the degree of activation of factor IX concentrates is related primarily to the concentration of factor IXa, which may be responsible for the thrombogenicity of these concentrates in some clinical settings.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
TB McNeely ◽  
MJ Griffith

The effects of heparin on the activation of blood coagulation factors IX and X in contact-activated plasma were determined in the present study. In the presence and absence of 0.5 U/mL heparin, the amounts of factor IX that were cleaved 30 minutes after the addition of calcium and phospholipid to plasma exposed to glass (ie, contact activated) were essentially identical. In the absence of heparin, however, the plasma clotting time was between three and four minutes, while in the presence of heparin, the clotting time was approximately 40 minutes. More factor IXa was inhibited by antithrombin III in the presence of heparin than in its absence, but factor IXa levels sufficient for factor X activation appeared to be present in the heparinized plasma. Neither an increase in factor Xa nor a decrease in factor X was detected, however, in heparinized plasma. We conclude that the step in the intrinsic pathway of coagulation that is inhibited in the presence of heparin is at the level of factor X activation.


1995 ◽  
Vol 310 (2) ◽  
pp. 427-431 ◽  
Author(s):  
S S Ahmad ◽  
R Rawala ◽  
W F Cheung ◽  
D W Stafford ◽  
P N Walsh

To study the structural requirements for factor IXa binding to platelets, we have carried out equilibrium binding studies with human factor IXa after replacing the second epidermal growth factor (EGF) domain by the corresponding polypeptide region of factor X. The chimeric protein, factor IX(Xegf2), and the wild-type, factor IXwt, produced in embryonic kidney cells 293 were radiolabelled with 125I and activated with factor XIa. Direct binding studies with thrombin-activated platelets showed normal stoichiometry and affinity of binding of factor IXawt in the presence of factor VIIIa (2 units/ml) and factor X (1.5 microM). However, under similar experimental conditions, factor IXa(Xegf2) was bound to a smaller number of sites (396 sites/platelet) with decreased affinity, i.e. a dissociation constant (Kd) of 1.4 nM, compared with normal factor IXa, factor IXaN (558 sites/platelet; Kd 0.67 nM), or factor IXawt (590 sites/platelet; Kd 0.61 nM). The concentrations of factor IXaN and factor IXawt required for half-maximal rates of factor-X activation were 0.63 nM and 0.7 nM, indicating a close correspondence of the Kd, app. for binding of factor IXawt to the factor-X activating complex on activated platelets to the Kd obtained in equilibrium binding studies. In contrast, kinetic parameters for factor-X activation by factor IXa(Xegf2) showed a decreased affinity (Kd 1.5 nM), in agreement with results of binding studies. These studies with factor IX(Xegf2) suggest that the EGF-2 domain may be important for specific high-affinity factor IXa binding to platelets in the presence of factor VIIIa and factor X.


1999 ◽  
Vol 339 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Joost A. KOLKMAN ◽  
Peter J. LENTING ◽  
Koen MERTENS

The contribution of the Factor IX catalytic domain to Factor VIIIa binding has been evaluated by functional analysis of Factor IX variants with substitutions in α-helix region 333–339 and region 301–303. These regions were found to play a prominent role in Factor VIIIa-dependent stimulation of Factor X activation, but do not contribute to the high-affinity interaction with Factor VIIIa light chain. We propose that complex assembly between Factor IXa and Factor VIIIa involves multiple interactive sites that are located on different domains of these proteins.


Biochemistry ◽  
2000 ◽  
Vol 39 (32) ◽  
pp. 9850-9858 ◽  
Author(s):  
Fredda S. London ◽  
Peter N. Walsh

Sign in / Sign up

Export Citation Format

Share Document