scholarly journals Role of colony-stimulating factor in myelopoiesis in murine long-term bone marrow cultures

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1211-1217 ◽  
Author(s):  
DA Lipschitz ◽  
KB Udupa ◽  
JM Taylor ◽  
RK Shadduck ◽  
A Waheed

Abstract Weekly medium change or midweek feeding of long-term bone marrow cultures (LTMBCs) results in a significant increase in total myeloid cell production. Proliferative myeloid cells peak 48 hours after feeding, and nonproliferative myeloid cells reach maximum levels at 72 hours. This increase in myelopoiesis is invariably preceded by a significant elevation in biologically and immunologically measurable colony-stimulating factor (CSF) in the supernatants of LTBMC. The level peaks 24 hours after medium change, then gradually returns to basal values. The decrease in CSF relates to its consumption by generating myeloid precursors because no fluctuation in the levels occur in cultures without active myelopoiesis. No significant inhibitors or promoters of CSF were detected. When highly purified L cell CSF, CSF in lung-conditioned medium, or CSF concentrated from LTBMC supernatant is added to cultures, an identical increase in myelopoiesis occurs. Anti- CSF antiserum, added to culture at the time of medium change, totally neutralizes supernatant CSF levels but does not affect myelopoiesis. These findings suggest a potential regulatory role for CSF in myelopoiesis in LTBMC. CSF appears to function within the microenvironment through a mechanism involving cell:cell interactions or by causing the production of other substances that stimulate myelopoiesis. Because exogenous CSF stimulates myelopoiesis, it is likely that it too can react either directly or through microenvironmental cells to stimulate primitive myeloid cells to divide.

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1211-1217
Author(s):  
DA Lipschitz ◽  
KB Udupa ◽  
JM Taylor ◽  
RK Shadduck ◽  
A Waheed

Weekly medium change or midweek feeding of long-term bone marrow cultures (LTMBCs) results in a significant increase in total myeloid cell production. Proliferative myeloid cells peak 48 hours after feeding, and nonproliferative myeloid cells reach maximum levels at 72 hours. This increase in myelopoiesis is invariably preceded by a significant elevation in biologically and immunologically measurable colony-stimulating factor (CSF) in the supernatants of LTBMC. The level peaks 24 hours after medium change, then gradually returns to basal values. The decrease in CSF relates to its consumption by generating myeloid precursors because no fluctuation in the levels occur in cultures without active myelopoiesis. No significant inhibitors or promoters of CSF were detected. When highly purified L cell CSF, CSF in lung-conditioned medium, or CSF concentrated from LTBMC supernatant is added to cultures, an identical increase in myelopoiesis occurs. Anti- CSF antiserum, added to culture at the time of medium change, totally neutralizes supernatant CSF levels but does not affect myelopoiesis. These findings suggest a potential regulatory role for CSF in myelopoiesis in LTBMC. CSF appears to function within the microenvironment through a mechanism involving cell:cell interactions or by causing the production of other substances that stimulate myelopoiesis. Because exogenous CSF stimulates myelopoiesis, it is likely that it too can react either directly or through microenvironmental cells to stimulate primitive myeloid cells to divide.


1983 ◽  
Vol 114 (1) ◽  
pp. 88-92 ◽  
Author(s):  
Richard K. Shadduck ◽  
Abdul Waheed ◽  
Joel S. Greenberger ◽  
T. Michael Dexter

1993 ◽  
Vol 106 (3) ◽  
pp. 761-769
Author(s):  
E. de Wynter ◽  
T. Allen ◽  
L. Coutinho ◽  
D. Flavell ◽  
S.U. Flavell ◽  
...  

The distribution of granulocyte macrophage colony-stimulating factor (GM-CSF) in human long-term bone marrow cultures (HLTBMC) was examined using two monoclonal antibodies raised using purified recombinant GM-CSF and a third commercially available GM-CSF antibody. The antibodies were able to bind to purified recombinant GM-CSF and showed inhibition of GM-CFC colonies in the presence of both recombinant and native protein. All antibodies displayed similar patterns of distribution in both permeabilised and non-permeabilised stromal cell preparations. Fibroblasts were labelled at their periphery in early cultures and both endothelial cells and fibroblasts showed cytoplasmic labelling with anti-GM-CSF. The fact that GM-CSF appears to be sequestered by cells of the bone marrow stroma raises the possibility that it is synthesized by these cells and may regulate activity of the progenitor cells in the haemopoietic foci. In contrast, early progenitor cells within the foci did not stain with any of the anti-GM-CSF antibodies. Adipocytes, which differentiate from fibroblasts in these cultures, showed a diffuse staining pattern. Two types of macrophage staining were observed in the non-permeabilised cells; those exhibiting only autofluorescence and those that bound the antibody. Intracellular staining was apparent in a small sub-population. Generally, the staining persisted up to eight weeks of culture and thereafter declined, becoming virtually undetectable after 12 weeks. This correlates with the pattern of GM-CFC production in long-term bone marrow cultures.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 761-767 ◽  
Author(s):  
JM Heard ◽  
S Fichelson ◽  
B Varet

Abstract The involvement of colony-stimulating activity (CSA) in murine long- term bone marrow cultures (LTBMC) was studied using bilayer agar cultures. The supernatants of LTBMC were removed, a layer of dense agar was spread over the cells adherent to the bottom of the flask, and fresh myeloid cells were plated as source of CFU-C in an upper agar layer. Large numbers of granulocytic and macrophagic colonies developed regularly when target cells were plated over adherent cells of nonrecharged and greater than 12 wk old LTBMC that were hematopoietically inactive (i.e., producing a low number of nonadherent cells). The removal of adherent cells from the myeloid cells used as source of CFU-C did not decrease the number of colonies. This suggests that adherent cells of LTBMC release CSA that is directly active on CFU- C. This CSA was no longer detectable over adherent layers of hematopoietically active LTBMC. A close inverse relationship was demonstrated between the number of nonadherent cells harvested before the assay and the level of CSA. No inhibitor for CSA was demonstrated in the supernatant of hematopoietically active cultures. Murine exogenous CSA incubated over the adherent layer host its activity within 24 hr, whereas in the same conditions human CSA retained its activity. These data demonstrate the production of CSA by the adherent layer of LTBMC and strongly suggest its specific in situ consumption by differentiating myeloid cells.


Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 518-524 ◽  
Author(s):  
RS Taichman ◽  
MJ Reilly ◽  
SG Emerson

Hematopoietic stem cell differentiation occurs in direct proximity to osteoblasts within the bone marrow cavity. Despite this striking affiliation, surprisingly little is known about the precise cellular and molecular impact of osteoblasts on the bone marrow microenvironment. Recently, we showed that human osteoblasts produce a variety of cytokine mRNAs including granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and interleukin-6. We examined here the ability of osteoblasts to support the development of hematopoietic colonies from progenitors as well the ability to maintain long-term culture-initiating cells (LTC-IC) in vitro. Examination of the hematopoietic cells recovered after 2 weeks of culture showed that osteoblasts support the maintenance of immature hematopoietic phenotypes. In methylcellulose assays, osteoblasts stimulate the development of hematopoietic colonies to a level at least 10-fold over controls from progenitor cells. Using limiting dilutional bone marrow cultures, we observed an activity produced by osteoblasts resulting in an threefold to fourfold expansion of human LTC-IC and progenitor cells in vitro. Thus, the presence of hematopoietic stem cells in close proximity to endosteal surfaces in vivo may be due in part to a requirement for osteoblast-derived products.


Sign in / Sign up

Export Citation Format

Share Document