scholarly journals Suppressive effect of Sl/Sld mouse embryo-derived fibroblast cell lines on diffusible factor-dependent proliferation of mast cells

Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1557-1562
Author(s):  
H Onoue ◽  
Y Ebi ◽  
H Nakayama ◽  
XM Ru ◽  
Y Kitamura ◽  
...  

Two modes of mast cell growth are present, one dependent on diffusible growth factors (interleukins [IL] 3 and 4) and another dependent on contact with fibroblasts. The 3T3 fibroblast cell lines derived from WCB6F1-+/+ mouse embryos supported the proliferation of cultured mast cells (CMC), whereas the 3T3 fibroblast cell lines from WCB6F1-Sl/Sld mouse embryos did not. To investigate the relationship between growth factor-dependent and fibroblast-dependent growths of mast cells, we cocultured CMC and 3T3 fibroblasts in the presence of diffusible growth factors. WCB6F1-+/+ mouse embryo-derived 3T3 cells did not affect the growth factor-dependent proliferation of CMC, but WCB6F1-Sl/Sld mouse embryo-derived 3T3 cells significantly suppressed the proliferation. Close cell-to-cell contact was necessary for the suppression. The NWS1 fibroblast cell line was established from the spleen cells of an adult WBB6F1-+/+ mouse. Although the NWS1 cell line had no supporting effect on the proliferation of CMC in the absence of diffusible growth factors, it did not suppress the proliferation of CMC induced by the growth factors. The present result suggests that a product of mutant Sl genes may be involved in the suppressive activity of WCB6F1-Sl/Sld mouse embryo-derived 3T3 cells.

Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1557-1562 ◽  
Author(s):  
H Onoue ◽  
Y Ebi ◽  
H Nakayama ◽  
XM Ru ◽  
Y Kitamura ◽  
...  

Abstract Two modes of mast cell growth are present, one dependent on diffusible growth factors (interleukins [IL] 3 and 4) and another dependent on contact with fibroblasts. The 3T3 fibroblast cell lines derived from WCB6F1-+/+ mouse embryos supported the proliferation of cultured mast cells (CMC), whereas the 3T3 fibroblast cell lines from WCB6F1-Sl/Sld mouse embryos did not. To investigate the relationship between growth factor-dependent and fibroblast-dependent growths of mast cells, we cocultured CMC and 3T3 fibroblasts in the presence of diffusible growth factors. WCB6F1-+/+ mouse embryo-derived 3T3 cells did not affect the growth factor-dependent proliferation of CMC, but WCB6F1-Sl/Sld mouse embryo-derived 3T3 cells significantly suppressed the proliferation. Close cell-to-cell contact was necessary for the suppression. The NWS1 fibroblast cell line was established from the spleen cells of an adult WBB6F1-+/+ mouse. Although the NWS1 cell line had no supporting effect on the proliferation of CMC in the absence of diffusible growth factors, it did not suppress the proliferation of CMC induced by the growth factors. The present result suggests that a product of mutant Sl genes may be involved in the suppressive activity of WCB6F1-Sl/Sld mouse embryo-derived 3T3 cells.


Blood ◽  
1993 ◽  
Vol 81 (5) ◽  
pp. 1184-1192 ◽  
Author(s):  
M Nishikawa ◽  
K Ozawa ◽  
A Tojo ◽  
T Yoshikubo ◽  
A Okano ◽  
...  

Abstract To investigate the functional change of stromal cells along with differentiation, we used a differentiation-inducible mouse embryo fibroblast cell line, C3H10T1/2 (10T1/2). Stably determined preadipocyte and myoblast cell lines were established after a brief exposure of 10T1/2 cells to 5-azacytidine. These cell lines terminally differentiated into adipocytes and myotubes, respectively, under appropriate conditions. The hematopoiesis-supporting ability of each 10T1/2-derived cell line was examined by coculture with FACS-sorted murine hematopoietic stem cells (Thy-1lo c-kit+ Lin-). The number of granulocyte-macrophage progenitors (CFU-GM) was slightly reduced after 7 days of culture with parent 10T1/2 fibroblasts, whereas a marked increase in CFU-GM number was observed when the cells were cultured on preadipocytes. Mature adipocytes and myogenically determined cell lines, on the other hand, did not support CFU-GM growth. Further, Northern analysis showed that the preadipocyte cell line acquired the ability to produce a significant amount of stem cell factor (SCF), interleukin-6 (IL-6), leukemia inhibitory factor, and macrophage colony- stimulating factor mRNAs in response to IL-1 or lipopolysaccharide stimulation. Terminal adipocytic differentiation resulted in reduced ability to express these cytokine mRNAs. Similarly, highest IL-6 activity was detected in the supernatant of preadipocyte culture, whereas adipocytes did not secrete IL-6 even after IL-1 stimulation. Interestingly, hematopoiesis-nonsupporting myoblasts and myotubes also expressed abundant SCF mRNA, suggesting that SCF, per se, may not be sufficient for stem cell growth and survival. The 10T1/2-derived cell lines could provide a valuable tool to aid in the analysis of stromal cell development and the search for novel stromal factors.


1985 ◽  
Vol 229 (1) ◽  
pp. 119-125 ◽  
Author(s):  
K D Brown ◽  
D M Blakeley ◽  
P Roberts ◽  
R J Avery

Transformation of NIH/3T3 cells by Kirsten murine sarcoma virus (MSV) caused a dramatic reduction in the number of cell-surface receptors for epidermal growth factor (EGF). However, the number of EGF receptors remained at a very low level in a non-tumourigenic revertant cell line isolated from the virus-transformed cells, indicating that an increase in EGF receptors is not a requirement for the phenotypic reversion of Kirsten MSV-transformed 3T3 cells. Serum-free conditioned medium from normal and virus-transformed cell lines contained similar amounts of cell growth-promoting activity as assayed by the ability to stimulate DNA synthesis in quiescent Swiss 3T3 cell cultures. However, the concentrated conditioned medium from these cell lines showed no evidence of beta-transforming growth factor (TGF) activity as assayed by promotion of anchorage-independent growth of untransformed normal rat kidney (NRK) fibroblasts in agarose. The cellular release of alpha-TGF activity was assayed by measuring the ability of concentrated conditioned medium to inhibit the binding of 125I-EGF to Swiss 3T3 cells. Conditioned medium protein from the virus-transformed cell line inhibited 125I-EGF binding but only to the same extent as conditioned medium protein prepared from the untransformed cell line. The alpha-TGF secretion by these cell lines was estimated to be 30-45-fold lower than the level of alpha-TGF released by a well-characterized alpha-TGF-producing cell line (3B11). These results suggest that the induction of TGF release is not a necessary event in the transformation of NIH/3T3 cells by Kirsten MSV.


Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 463-468 ◽  
Author(s):  
J Fujita ◽  
H Nakayama ◽  
H Onoue ◽  
Y Ebi ◽  
Y Kanakura ◽  
...  

Abstract Although W/Wv mutant mice are profoundly deficient in tissue mast cells, these mice do have cells with similar features of mast cells that develop from their bone marrow cells as efficiently as those from congenic +/+ mice in pokeweed mitogen-stimulated spleen cell- conditioned medium (PWM-SCM). With cultured mast cells (CMCs), we analyzed the mechanism of mast-cell deficiency in tissues of W/Wv mice. CMCs were established from bone marrow cells of W/Wv and congenic +/+ mice with PWM-SCM, and then co-cultured with various mouse fibroblast cell lines without PWM-SCM. All the examined mouse embryo-derived fibroblast cell lines maintained CMCs derived from +/+ mice, but not CMCs from W/Wv mice, for greater than 2 weeks. Mast cells in S phase were observed only in CMCs derived from +/+ mice under these conditions. The poor survival of W/Wv CMCs as compared with +/+ CMCs was not owing to a differential death rate but to the inability of W/Wv CMCs to continue active proliferation on fibroblasts without PWM-SCM. By synchronizing CMCs at the G1 phase of the cell cycle, the defect in W/Wv CMCs was further characterized as a failure to transit G1 and enter the S phase upon contact with fibroblasts. This finding indicates the indispensable function of the W gene product(s) for this response.


Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 463-468
Author(s):  
J Fujita ◽  
H Nakayama ◽  
H Onoue ◽  
Y Ebi ◽  
Y Kanakura ◽  
...  

Although W/Wv mutant mice are profoundly deficient in tissue mast cells, these mice do have cells with similar features of mast cells that develop from their bone marrow cells as efficiently as those from congenic +/+ mice in pokeweed mitogen-stimulated spleen cell- conditioned medium (PWM-SCM). With cultured mast cells (CMCs), we analyzed the mechanism of mast-cell deficiency in tissues of W/Wv mice. CMCs were established from bone marrow cells of W/Wv and congenic +/+ mice with PWM-SCM, and then co-cultured with various mouse fibroblast cell lines without PWM-SCM. All the examined mouse embryo-derived fibroblast cell lines maintained CMCs derived from +/+ mice, but not CMCs from W/Wv mice, for greater than 2 weeks. Mast cells in S phase were observed only in CMCs derived from +/+ mice under these conditions. The poor survival of W/Wv CMCs as compared with +/+ CMCs was not owing to a differential death rate but to the inability of W/Wv CMCs to continue active proliferation on fibroblasts without PWM-SCM. By synchronizing CMCs at the G1 phase of the cell cycle, the defect in W/Wv CMCs was further characterized as a failure to transit G1 and enter the S phase upon contact with fibroblasts. This finding indicates the indispensable function of the W gene product(s) for this response.


Oncogene ◽  
1998 ◽  
Vol 17 (4) ◽  
pp. 441-448 ◽  
Author(s):  
Xiaolan Lu ◽  
Cheng-Kui Qu ◽  
Zhong-Qing Shi ◽  
Gen-Sheng Feng

Sign in / Sign up

Export Citation Format

Share Document