scholarly journals Recombinant human factor IX: replacement therapy, prophylaxis, and pharmacokinetics in canine hemophilia B

Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2603-2610 ◽  
Author(s):  
KM Brinkhous ◽  
JL Sigman ◽  
MS Read ◽  
PF Stewart ◽  
KP McCarthy ◽  
...  

Recombinant human factor IX (rFIX) has been expressed in transduced cultured cell systems since 1985. Because there has been limited in vivo testing of rFIX in hemophilia B subjects, this study was undertaken using the severe hemophilia B canines of the Chapel Hill strain. Three groups of hemophilic dogs received either 50, 100, or 200 IU/kg of rFIX. As a control, a fourth group of hemophilic dogs received 50 IU/kg of a high purity, plasma-derived human FIX (pdFIX). The coagulant and hemostatic effects of rFIX and pdFIX were similar with all comparative dosing regimens. Based on activity data, the elimination half-life of rFIX was 18.9 +/- 2.3 hours and pdFIX was 17.9 +/- 2.1 hours. A prophylactic regimen administering rFIX daily resulted in a continuous therapeutic level of plasma FIX and was accompanied by a two-fold increase in recovery levels by day 5, compared to that observed with administration of a single bolus. The mechanisms of the high to complete recovery of FIX with the prophylactic regimen could depend not only on the degree of saturation of the vascular endothelial binding sites but also on the altered dynamics of the balance of FIX distribution between the intravascular and extravascular compartments. The pharmacokinetic (PK) parameters for rFIX and pdFIX were similar. However, the relative PK values for V1 and V5s of both products on day 5 differed greatly from day 1 and may reflect the changing equilibrium of FIX between compartments with elevated levels of plasma FIX. Neutralizing antihuman FIX antibodies resulting from human FIX antigen being administered to FIX deficient dogs were observed beginning at 14 days. The antigenicity of rFIX and pdFIX appeared to be comparable. Despite the very different procedures used for production of rFIX and pdFIX products, in vivo testing in hemophilia B dogs showed the functional behavior of these products is similar; they are highly effective for replacement therapy and for prophylaxis.

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5095-5103 ◽  
Author(s):  
G Hortelano ◽  
A Al-Hendy ◽  
FA Ofosu ◽  
PL Chang

A potentially cost-effective strategy for gene therapy of hemophilia B is to create universal factor IX-secreting cell lines suitable for implantation into different patients. To avoid graft rejection, the implanted cells are enclosed in alginate-polylysine-alginate microcapsules that are permeable to factor IX diffusion, but impermeable to the hosts' immune mediators. This nonautologous approach was assessed by implanting encapsulated mouse myoblasts secreting human factor IX into allogeneic mice. Human factor IX was detected in the mouse plasma for up to 14 days maximally at approximately 4 ng/mL. Antibodies to human factor IX were detected after 3 weeks at escalating levels, which were sustained throughout the entire experiment (213 days). The antibodies accelerated the clearance of human factor IX from the circulation of the implanted mice and inhibited the detection of human factor IX in the mice plasma in vitro. The encapsulated myoblasts retrieved periodically from the implanted mice up to 213 days postimplantation were viable and continued to secrete human factor IX ex vivo at undiminished rates, hence suggesting continued factor IX gene expression in vivo. Thus, this allogeneic gene therapy strategy represents a potentially feasible alternative to autologous approaches for the treatment of hemophilia B.


Blood ◽  
2003 ◽  
Vol 102 (13) ◽  
pp. 4393-4398 ◽  
Author(s):  
Karen E. Russell ◽  
Eva H. N. Olsen ◽  
Robin A. Raymer ◽  
Elizabeth P. Merricks ◽  
Dwight A. Bellinger ◽  
...  

AbstractIntravenous administration of recombinant human factor IX (rhFIX) acutely corrects the coagulopathy in hemophilia B dogs. To date, 20 of 20 dogs developed inhibitory antibodies to the xenoprotein, making it impossible to determine if new human FIX products, formulations, or methods of chronic administration can reduce bleeding frequency. Our goal was to determine whether hemophilia B dogs rendered tolerant to rhFIX would have reduced bleeding episodes while on sustained prophylactic rhFIX administered subcutaneously. Reproducible methods were developed for inducing tolerance to rhFIX in this strain of hemophilia B dogs, resulting in a significant reduction in the development of inhibitors relative to historical controls (5 of 12 versus 20 or 20, P < .001). The 7 of 12 tolerized hemophilia B dogs exhibited shortened whole blood clotting times (WBCTs), sustained detectable FIX antigen, undetectable Bethesda inhibitors, transient or no detectable antihuman FIX antibody titers by enzyme-linked immunosorbent assay (ELISA), and normal clearance of infused rhFIX. Tolerized hemophilia B dogs had 69% reduction in bleeding frequency in year 1 compared with nontolerized hemophilia B dogs (P = .0007). If proven safe in human clinical trials, subcutaneous rhFIX may provide an alternate approach to prophylactic therapy in selected patients with hemophilia B. (Blood. 2003;102:4393-4398)


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5136-5136
Author(s):  
Daniel L. Coutu ◽  
Jessica Cuerquis ◽  
May Griffith ◽  
Mark D. Blostein ◽  
Jacques Galipeau

Abstract Hemophilia B is considered an appropriate disease target for gene therapy because it is a well characterized monogenic disease with a large therapeutic index. Despite promising preclinical and clinical trials in the last decade, safety and efficacy concerns associated with the in vivo administration of viral vectors still need to be addressed before gene therapy becomes part of the standard arsenal for clinicians. Our laboratory has developed a cell therapy approach using gene-enhanced autologous Mesenchymal Stromal Cells (MSCs) to deliver a therapeutic plasmatic protein which addresses these safety concerns. In this study, we tested whether MSCs engineered to express human Factor IX (hFIX) can be used to reverse the bleeding phenotype of R333Q hemophilia B mice developed by Stafford et al. We retrovirally engineered MSCs harvested from normal C57Bl/6 to express hFIX. A gene enhanced polyclonal population of MSCs was capable of producing carboxylated and fully active hFIX by in vitro clotting assays. By ELISA, the cells were shown to produce approximately 250ng of hFIX per million cells per 24h. Ten million of these cells were embedded in a collagen I gel matrix and implanted subcutaneously in R333Q hemophilia B mice (n=10). hFIX activity in mouse plasma (test and control groups) were followed weekly by aPTT assays. hFIX activity reached levels as high as 20% normal activity in some animals with an average +/− SEM of 11.2 +/− 2.1 (FIX activity in controls is <1%). The hFIX activity returned to baseline within 4 weeks. In conclusion, we demonstrate that gene-enhanced autologous MSCs can serve as an effective delivery of functional FIX for temporary correction of the hemophilia B phenotype. We hypothesize the presence of GFP co-expression by the implanted MSCs caused their immune rejection and we are currently testing this hypothesis.


1977 ◽  
Author(s):  
P.A. Gentry ◽  
A.R. Thompson ◽  
A.W. Forrey

In preparing a factor IX concentrate with a high yield and low hepatitis and thromboembolic risks, we have tested this material for survival in an in vivo system, the hemophiliac dog. By following the disappearance of radiolabeled, isolated factor IX in addition to the classic clotting assays, data on protein survival and more accurate kinetic parameters were obtained.Crude factor IX concentrate was prepared by batchwise adsorption-elution with DEAE-Sephadex using cryoprecipitate-poor human plasma. Isolated human factor IX was radiolabeled with 125I by chloramine-T without in vitro loss of clotting activity (Thompson, J Clin Invest, in press, 1977). A preparation containing both crude and isolated factor IX was then subjected to filtration (0.22 μm) and lyophilization; clotting and radioactivity were not altered by these steps.Following infusion of the combined preparation into a dog with severe hemophilia B (0% baseline factor IX) 10 post infusion samples were taken over 96 h for determination of radioactivity and factor IX clotting activity. These data were then analyzed by fitting to a two exponential expression using a Marquart non-linear least squares numerical procedure for a two compartment open model. The central volume was 14.5% of the animal’s body weight; the total volume of distribution was 28% with a t 1/2 distribution of 114 min. The t 1/2 elimination was 20 h; the slower phase of elimination (β, or that affected by redistribution) had a t 1/2 of 40 h. Factor IX clotting activity from the crude concentrate closely paralleled radioactivity from the isolated factor IX throughout the 96 h; t 1/2 β was slightly longer from the clotting activity data.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 438-445
Author(s):  
TD Palmer ◽  
AR Thompson ◽  
AD Miller

Inherited diseases might be treated by introducing normal genes into a patient's somatic tissues to correct the genetic defects. In the case of hemophilia resulting from a missing clotting factor, the required gene could be introduced into any cell as long as active factor reached the circulation. We previously showed that retroviral vectors can efficiently transfer genes into normal skin fibroblasts and that the infected cells can produce high levels of a therapeutic product in vitro. In the current study, we examined the ability of skin fibroblasts to secrete active clotting factor after infection with different retroviral vectors encoding human clotting factor IX. Normal human fibroblasts infected with one vector secreted greater than 3 micrograms factor IX/10(6) cells/24 h. Of this protein, greater than 70% was structurally and functionally indistinguishable from human factor IX derived from normal plasma. This suggests that infected autologous fibroblasts might provide therapeutic levels of factor IX if transplanted into patients suffering from hemophilia B. By transplanting normal diploid fibroblasts infected with the factor IX vectors, we showed that human factor IX can be produced and is circulated at readily detectable levels in rats and mice.


Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1302-1308 ◽  
Author(s):  
W Kisiel ◽  
KJ Smith ◽  
BA McMullen

Coagulation factor IX is a vitamin K-dependent glycoprotein that circulates in blood as a precursor of a serine protease. Incubation of human factor IX with human alpha-thrombin resulted in a time and enzyme concentration-dependent cleavage of factor IX yielding a molecule composed of a heavy chain (mol wt 50,000) and a doublet light chain (mol wt 10,000). The proteolysis of factor IX by thrombin was significantly inhibited by physiological levels of calcium ions. Under nondenaturing conditions, the heavy and light chains of thrombin- cleaved factor IX remained strongly associated, but these chains were readily separated by gel filtration in the presence of denaturants. Amino-terminal sequence analyses of the isolated heavy and light chains of thrombin-cleaved human factor IX indicated that thrombin cleaved peptide bonds at Arg327-Val328 and Arg338-Ser339 in this molecule. Comparable cleavages were observed in bovine factor IX by bovine thrombin and occurred at Arg319-Ser320 and Arg339-Ser340. Essentially, a complete loss of factor IX procoagulant activity was associated with its cleavage by thrombin. Furthermore, thrombin-cleaved factor IX neither developed coagulant activity after treatment with factor XIa nor inhibited the coagulant activity of native factor IX. These data indicate that thrombin cleaves factor IX near its active site serine residue, rendering it incapable of activating factor X. Whether or not this reaction occurs in vivo is unknown.


Author(s):  
M. A. Srour ◽  
H. Fechner ◽  
X. Wang ◽  
U. Siemetzki ◽  
T. Albert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document