scholarly journals Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

2011 ◽  
Vol 4 (1) ◽  
Author(s):  
Lorena B Harris ◽  
Scott O Rogers
2013 ◽  
Vol 60 (3) ◽  
pp. 135-148 ◽  
Author(s):  
Ioannis A. Papaioannou ◽  
Chrysoula D. Dimopoulou ◽  
Milton A. Typas

1998 ◽  
Vol 46 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Hiromi Nishida ◽  
Yoshito Tajiri ◽  
Junta Sugiyama

Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 97-108 ◽  
Author(s):  
K F Dobinson ◽  
M Henderson ◽  
R L Kelley ◽  
R A Collins ◽  
A M Lambowitz

Abstract The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.


2008 ◽  
Vol 190 (17) ◽  
pp. 5934-5943 ◽  
Author(s):  
Rahul Raghavan ◽  
Linda D. Hicks ◽  
Michael F. Minnick

ABSTRACT The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of selfish genetic elements, including two group I introns (Cbu.L1917 and Cbu.L1951) and an intervening sequence that interrupts the 23S rRNA gene, an intein (Cbu.DnaB) within dnaB and 29 insertion sequences. Here, we describe the ability of the intron-encoded RNAs (ribozymes) to retard bacterial growth rate (toxicity) and examine the functionality and phylogenetic history of Cbu.DnaB. When expressed in Escherichia coli, both introns repressed growth, with Cbu.L1917 being more inhibitory. Both ribozymes were found to associate with ribosomes of Coxiella and E. coli. In addition, ribozymes significantly reduced in vitro luciferase translation, again with Cbu.L1917 being more inhibitory. We analyzed the relative quantities of ribozymes and genomes throughout a 14-day growth cycle of C. burnetii and found that they were inversely correlated, suggesting that the ribozymes have a negative effect on Coxiella's growth. We determined possible sites for ribozyme associations with 23S rRNA that could explain the observed toxicities. Further research is needed to determine whether the introns are being positively selected because they promote bacterial persistence or whether they were fixed in the population due to genetic drift. The intein, Cbu.DnaB, is able to self-splice, leaving the host protein intact and presumably functional. Similar inteins have been found in two extremophilic bacteria (Alkalilimnicola ehrlichei and Halorhodospira halophila) that are distantly related to Coxiella, making it difficult to determine whether the intein was acquired by horizontal gene transfer or was vertically inherited from a common ancestor.


1999 ◽  
Vol 35 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Joon-seok Chae ◽  
Suryakant D. Waghela ◽  
Thomas M. Craig ◽  
Alan A. Kocan ◽  
Gerald G. Wagner ◽  
...  

2009 ◽  
Vol 191 (12) ◽  
pp. 4044-4046 ◽  
Author(s):  
Rahul Raghavan ◽  
Linda D. Hicks ◽  
Michael F. Minnick

ABSTRACT Cbu.L1917, a group I intron present in the 23S rRNA gene of Coxiella burnetii, possesses a unique 3′-terminal adenine in place of a conserved guanine. Here, we show that, unlike all other group I introns, Cbu.L1917 utilizes a different cofactor for each splicing step and has a decreased self-splicing rate in vitro.


1993 ◽  
Vol 37 (1) ◽  
Author(s):  
Hiromi Nishida ◽  
PaulA. Blanz ◽  
Junta Sugiyama

2018 ◽  
Author(s):  
Jeffrey S. McLean ◽  
Batbileg Bor ◽  
Thao T. To ◽  
Quanhui Liu ◽  
Kristopher A. Kerns ◽  
...  

ABSTRACTRecently, we discovered that a member of the Saccharibacteria/TM7 phylum (strain TM7x) isolated from the human oral cavity, has an ultra-small cell size (200-300nm), a highly reduced genome (705 Kbp) with limited de novo biosynthetic capabilities, and a very novel lifestyle as an obligate epibiont on the surface of another bacterium 1. There has been considerable interest in uncultivated phyla, particularly those that are now classified as the proposed candidate phyla radiation (CPR) reported to include 35 or more phyla and are estimated to make up nearly 15% of the domain Bacteria. Most members of the larger CPR group share genomic properties with Saccharibacteria including reduced genomes (<1Mbp) and lack of biosynthetic capabilities, yet to date, strain TM7x represents the only member of the CPR that has been cultivated and is one of only three CPR routinely detected in the human body. Through small subunit ribosomal RNA (SSU rRNA) gene surveys, members of the Saccharibacteria phylum are reported in many environments as well as within a diversity of host species and have been shown to increase dramatically in human oral and gut diseases. With a single copy of the 16S rRNA gene resolved on a few limited genomes, their absolute abundance is most often underestimated and their potential role in disease pathogenesis is therefore underappreciated. Despite being an obligate parasite dependent on other bacteria, six groups (G1-G6) are recognized using SSU rRNA gene phylogeny in the oral cavity alone. At present, only genomes from the G1 group, which includes related and remarkably syntenic environmental and human oral associated representatives1, have been uncovered to date. In this study we systematically captured the spectrum of known diversity in this phylum by reconstructing completely novel Class level genomes belonging to groups G3, G6 and G5 through cultivation enrichment and/or metagenomic binning from humans and mammalian rumen. Additional genomes for representatives of G1 were also obtained from modern oral plaque and ancient dental calculus. Comparative analysis revealed remarkable divergence in the host-associated members across this phylum. Within the human oral cavity alone, variation in as much as 70% of the genes from nearest oral clade (AAI 50%) as well as wide GC content variation is evident in these newly captured divergent members (G3, G5 and G6) with no environmental relatives. Comparative analyses suggest independent episodes of transmission of these TM7 groups into humans and convergent evolution of several key functions during adaptation within hosts. In addition, we provide evidence from in vivo collected samples that each of these major groups are ultra-small in size and are found attached to larger cells.


Sign in / Sign up

Export Citation Format

Share Document