ssu rrna
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 58)

H-INDEX

45
(FIVE YEARS 3)

2021 ◽  
Vol 15 (11) ◽  
pp. e0009982
Author(s):  
Narissara Jariyapan ◽  
Michelle D. Bates ◽  
Paul A. Bates

PCR-based methods to amplify the 3′ untranslated region (3′-UTR) of the heat shock protein 70 (type I) gene (HSP70-I) have previously been used for typing of Leishmania but not with Leishmania (Mundinia) martiniquensis and L. (Mundinia) orientalis, newly identified human pathogens. Here, the 3′-UTRs of HSP70-I of L. martiniquensis, L. orientalis, and 10 other species were sequenced and analyzed. PCR-Restriction Fragment Length Polymorphism (RFLP) analysis targeting the 3′-UTR of HSP70-I was developed. Also, the detection limit of HSP70-I-3′-UTR PCR methods was compared with two other commonly used targets: the 18S small subunit ribosomal RNA (SSU-rRNA) gene and the internal transcribed spacer 1 region of the rRNA (ITS1-rRNA) gene. Results showed that HSP70-I-3′-UTR PCR methods could be used to identify and differentiate between L. martiniquensis (480–2 bp) and L. orientalis (674 bp) and distinguished them from parasites of the subgenus Viannia and of the subgenus Leishmania. PCR-RFLP patterns of the 3′-UTR of HSP70-I fragments digested with BsuRI restriction enzyme successfully differentiated L. martiniquensis, L. orientalis, L. braziliensis, L. guyanensis = L. panamensis, L. mexicana = L. aethiopica = L. tropica, L. amazonensis, L. major, and L. donovani = L. infantum. For the detection limit, the HSP70-I-3′-UTR PCR method could detect the DNA of L. martiniquensis and L. orientalis at the same concentration, 1 pg/μL, at a similar level to the SSU-rRNA PCR. The PCR that amplified ITS1-rRNA was more sensitive (0.01 pg/μL) than that of the HSP70-I-3′-UTR PCR. However, the sizes of both SSU-rRNA and ITS1-rRNA PCR amplicons could not differentiate between L. martiniquensis and L. orientalis. This is the first report of using HSP70-I-3′-UTR PCR based methods to identify the parasites causing leishmaniasis in Thailand. Also, the BsuRI-PCR-RFLP method can be used for differentiating some species within other subgenera.


2021 ◽  
Author(s):  
Xuhui Lin ◽  
Luyao Xin ◽  
Meng Qi ◽  
Minyu Hou ◽  
Shenquan Liao ◽  
...  

Abstract Background Cryptosporidium is one of the most prevalent parasites infecting both birds and mammals. To examine the prevalence of Cryptosporidium species and evaluate the public health significance of domestic chickens in Guangdong Province, Southern China, we analyzed 1001 fecal samples collected from 43 intensive broiler chicken farms from six distinct geographical regions between June 2020 and March 2021. Methods Individual DNAs were subjected to nested PCR-based amplification and sequencing of the small subunit of the nuclear ribosomal RNA gene (SSU rRNA). The 60 kDa glycoprotein gene (pgp60) was performed from all positive SSU rRNA samples to characterise subtypes of C. meleagridis. Results Cryptosporidium infection rates was found to be 13.2%, comprising with infections with C. meleagridis (78/1001, 7.8%), C. baileyi (48/1001, 4.8%) and mixed infections (6/1001, 0.6%). Three subtype families were identified, IIIb, IIIe and IIIg. Six subtypes were identified in broiler chickens, including one novel (IIIgA25G3R1a) and five previously reported (IIIbA23G1R1c, IIIbA24G1R1, IIIbA21G1R1a, IIIeA17G2R1 and IIIeA26G2R1). Within these subtypes, five known subtypes were genetically identical to those identified in humans. Conclusions This is the first report of C. meleagridis in chickens from Guangdong. The frequent occurrence of C. meleagridis in domestic chickens and the common C. meleagridis subtypes identified both in humans and chickens is of public health significance. Our study indicates that broiler chickens represent a potential zoonotic risk for the transmission of Cryptosporidium in this region.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3016
Author(s):  
Xin Yang ◽  
Yunhui Li ◽  
Yuxin Wang ◽  
Junwei Wang ◽  
Peng Lai ◽  
...  

Blastocystis sp. is an important zoonotic protist in humans and various animals with worldwide distribution. However, there have been no data on the occurrence of Blastocystis sp. in C. bactrianus, an important economic animal in northwestern China. In the present study, a PCR-sequencing tool based on the SSU rRNA gene was applied to investigate the prevalence and genetic diversity of Blastocystis sp. in 638 faecal samples from C. bactrianus in 21 sampling sites within three main breeding areas (Gansu, Inner Mongolia and Xinjiang) in northwestern China. The total prevalence of Blastocystis sp. was 21.8% (139/638) in C. bactrianus, with the infection rates of 29.5% (18/61), 50.0% (14/28) and 19.5% (107/549) for animals aged <2 years, 2–6 years and >6 years, respectively. Significant differences in prevalence were detected among C. bactrianus from three geographic areas (χ2 = 19.972, df = 2, p < 0.001) and all sampling sites (χ2 = 104.154, df = 20, p < 0.001). A total of 16 of 21 sampling sites were positive for Blastocystis sp., with the prevalence ranging from 7.7% to 70.6%. Sequence analysis of the SSU rRNA gene identified eight subtypes in C. bactrianus in the present study, including seven animal adapted subtypes (ST10, ST14, ST21, ST24, ST25, ST26 and ST30) and one potentially novel subtype, with ST10 being the dominant one. To the best of our knowledge, this study provides the first insight for the occurrence and genetic make-up of Blastocystis sp. in C. bactrianus and contributes to the understanding of the transmission of Blastocystis infection in C. bactrianus in China.


2021 ◽  
Vol 8 (9) ◽  
pp. 191
Author(s):  
Nadia Abarca ◽  
Mónica Santín ◽  
Sheila Ortega ◽  
Jenny G. Maloney ◽  
Nadja S. George ◽  
...  

Some enteric parasites causing zoonotic diseases in livestock have been poorly studied or even neglected. This is the case in stramenopile Blastocystis sp. and the microsporidia Enterocytozoon bieneusi in Spain. This transversal molecular epidemiological survey aims to estimate the prevalence and molecular diversity of Blastocystis sp. and E. bieneusi in cattle faecal samples (n = 336) in the province of Álava, Northern Spain. Initial detection of Blastocystis and E. bieneusi was carried out by polymerase chain reaction (PCR) and Sanger sequencing of the small subunit (ssu) rRNA gene and internal transcribed spacer (ITS) region, respectively. Intra-host Blastocystis subtype diversity was further investigated by next generation amplicon sequencing (NGS) of the ssu rRNA gene in those samples that tested positive by conventional PCR. Amplicons compatible with Blastocystis sp. and E. bieneusi were observed in 32.1% (108/336, 95% CI: 27.2–37.4%) and 0.6% (2/336, 95% CI: 0.0–1.4%) of the cattle faecal samples examined, respectively. Sanger sequencing produced ambiguous/unreadable sequence data for most of the Blastocystis isolates sequenced. NGS allowed the identification of 10 Blastocystis subtypes including ST1, ST3, ST5, ST10, ST14, ST21, ST23, ST24, ST25, and ST26. All Blastocystis-positive isolates involved mixed infections of 2–8 STs in a total of 31 different combinations. The two E. bieneusi sequences were confirmed as potentially zoonotic genotype BEB4. Our data demonstrate that Blastocystis mixed subtype infections are extremely frequent in cattle in the study area. NGS was particularly suited to discern underrepresented subtypes or mixed subtype infections that were undetectable or unreadable by Sanger sequencing. The presence of zoonotic Blastocystis ST1, ST3, and ST5, and E. bieneusi BEB4 suggest cross-species transmission and a potential risk of human infection/colonization.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 433
Author(s):  
Anastasia Borodina ◽  
Alexander Mylnikov ◽  
Jan Janouškovec ◽  
Patrick Keeling ◽  
Denis Tikhonenkov

Heterolobose amoebae are important members of marine, freshwater, and soil microbial communities, but their diversity remains under-explored. We studied the diversity of Vahlkampfiidae to improve our understanding of heterolobosean relationships and their representation in aquatic benthos. Using light and electron microscopy, and molecular phylogenies based on the SSU rRNA and ITS loci, we describe the fine morphology and evolutionary relationships of a new heterolobosean Parafumarolamoeba stagnalis n. sp. from a small pond in European Russia. Cells of P. stagnalis possess a clearly distinguishable anterior hyaline pseudopodium, eruptive movement, several thin and sometimes branched uroidal filaments, spherical cysts without pores and plugs, and mitochondria that have discoid cristae and are surrounded by cisternae of the endoplasmic reticulum. The genus Parafumarolamoeba has so far included a single species, Parafumarolamoeba alta from high-altitude soil in Tibet, which is morphologically distinct from P. stagnalis. Taxonomic description for a new Parafumarolamoeba species is therefore provided.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Vasana Jinatham ◽  
Diego M. Cantoni ◽  
Ian R. Brown ◽  
Thanakrit Vichaslip ◽  
Picha Suwannahitatorn ◽  
...  

Introduction. Prototheca species are non-photosynthetic trebouxiophyte algae ubiquitously distributed in nature and can be found in sewage and soil. This microbial eukaryote causes human protothecosis in immunocompromised individuals. Thus, Prototheca presence in the stool of individuals without gastrointestinal symptoms has been reported only rarely. Hypothesis/Gap statement. There is an absence of detailed characterization of human Prototheca isolates. Aim. The aim of this study was to perform morphological and molecular characterization of Prototheca isolates obtained from human stool. Methodology. Prototheca was isolated from faecal samples of four individuals living in a rural area in Thailand. A combination of bioimaging along with molecular and bioinformatics tools was used to characterize the four strains. The growth rate was tested using four media and three temperature conditions. Phylogenetic analysis using the small subunit ribosomal RNA (SSU rRNA) and cytochrome b (cytb) was also performed. Results. Static and live microscopy demonstrated the various life stages of Prototheca and its major defining cellular characteristics. An optimized DNA extraction methodology that improves DNA yield is provided. Partial fragments of the SSU rRNA and cytb genes were obtained. Phylogenetic analysis placed all four strains in the clade with Prototheca bovis. More broadly, Prototheca was not monophyletic but split into at least two distinct clades instead. Conclusion. The results represent the first molecular characterization of Prototheca in Thailand. The study provides insight into transmission dynamics of the organism and potential caveats in estimating the global prevalence of Prototheca. These will spearhead further investigations on Prototheca occurrence in rural areas of both industrialized and developing nations.


Author(s):  
Si-Yuan Qin ◽  
He-Ting Sun ◽  
Chuang Lyu ◽  
Jun-Hui Zhu ◽  
Zhen-Jun Wang ◽  
...  

Cryptosporidium is an enteric apicomplexan parasite, which can infect multiple mammals including livestock and wildlife. Tibetan Antelope (Pantholops hodgsonii) is one of the most famous wildlife species, that belongs to the first class protected wild animals in China. However, it has not been known whether Tibetan Antelope is infected with Cryptosporidium so far. The objective of the present study was to determine the prevalence and characterization of Cryptosporidium species infection in Tibetan Antelope and the corresponding species by using molecular biological method. In the current study, a total of 627 fecal samples were randomly collected from Tibetan Antelope in the Tibet Autonomous Region (2019–2020), and were examined by PCR amplification of the small subunit ribosomal RNA (SSU rRNA) gene. Among 627 samples, 19 (3.03%, 19/627) were examined as Cryptosporidium-positive, with 7 (2.33%, 7/300) in females and 12 (3.67%, 12/327) in males. The analysis of SSU rRNA gene sequence suggested that only two Cryptosporidium species, namely, C. xiaoi and C. ubiquitum, were identified in this study. This is the first evidence for an existence of Cryptosporidium in Tibetan Antelope. These findings extend the host range for Cryptosporidium spp. and also provide important data support for prevention and control of Cryptosporidium infection in Tibetan Antelope.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1131
Author(s):  
Felix Weinreich ◽  
Andreas Hahn ◽  
Kirsten Alexandra Eberhardt ◽  
Torsten Feldt ◽  
Fred Stephen Sarfo ◽  
...  

As qualified microscopy of enteric parasitoses as defined by high diagnostic accuracy is difficult to maintain in non-endemic areas due to scarce opportunities for practicing with positive sample materials, molecular diagnostic options provide less investigator-dependent alternatives. Here, we compared three molecular targets for the real-time PCR-based detection of Cryptosporidium spp. From a population of 1000 individuals comprising both Ghanaian HIV (human immunodeficiency virus) patients and military returnees after deployment in the tropics, stool samples were assessed for Cryptosporidium spp. by real-time PCR targeting the small subunit ribosomal RNA (SSU rRNA) gene, the Cryptosporidium oocyst wall (COWP) gene, and the DnaJ-like protein gene (DnaJ), respectively. In declining order, sensitivity of 100% for the SSU rRNA gene PCR, 90.0% for the COWP PCR and 88.8% for the DnaJ PCR, respectively, as well as specificity of 99.6% for the COWP PCR and 96.9% for both the SSU rRNA gene PCR and the DnaJ PCR, respectively, were recorded. Substantial agreement (kappa value 0.663) between the three assays was observed. Further, an accuracy-adjusted Cryptosporidium spp. prevalence of 6.0% was calculated for the study population. In conclusion, none of the assessed real-time PCR assays were associated with perfect test accuracy. However, a combination of highly sensitive SSU rRNA gene PCR for screening purposes and more specific COWP PCR for confirmatory testing should allow reliable diagnosis of Cryptosporidium spp. in stool samples even in low prevalence settings.


Author(s):  
Ran Li ◽  
Wenbao Zhuang ◽  
Congcong Wang ◽  
Hamed El-Serehy ◽  
Saleh A. Al-Farraj ◽  
...  

The morphology and molecular phylogeny of Plagiopyla ovata Kahl, 1931, a poorly known anaerobic ciliate, were investigated based on a population isolated from sand samples collected from the Yellow Sea coast at Qingdao, PR China. Details of the oral ciliature are documented for the first time to our knowledge and an improved species diagnosis is given. The small subunit ribosomal RNA (SSU rRNA) gene was newly sequenced and phylogenetic analyses revealed that P. ovata clusters within the monophyletic family Plagiopylidae. However, evolutionary relationships within both the family Plagiopylidae and the genus Plagiopyla remain obscure owing to undersampling, the lack of sequence data from known species and low nodal support or unstable topologies in gene trees. A key to the identification of the species of the genus Plagiopyla with validly published names is also supplied.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alejandro A. Schäffer ◽  
Richard McVeigh ◽  
Barbara Robbertse ◽  
Conrad L. Schoch ◽  
Anjanette Johnston ◽  
...  

Abstract Background The DNA sequences encoding ribosomal RNA genes (rRNAs) are commonly used as markers to identify species, including in metagenomics samples that may combine many organismal communities. The 16S small subunit ribosomal RNA (SSU rRNA) gene is typically used to identify bacterial and archaeal species. The nuclear 18S SSU rRNA gene, and 28S large subunit (LSU) rRNA gene have been used as DNA barcodes and for phylogenetic studies in different eukaryote taxonomic groups. Because of their popularity, the National Center for Biotechnology Information (NCBI) receives a disproportionate number of rRNA sequence submissions and BLAST queries. These sequences vary in quality, length, origin (nuclear, mitochondria, plastid), and organism source and can represent any region of the ribosomal cistron. Results To improve the timely verification of quality, origin and loci boundaries, we developed Ribovore, a software package for sequence analysis of rRNA sequences. The and programs are used to validate incoming sequences of bacterial and archaeal SSU rRNA. The program is used to create high-quality datasets of rRNAs from different taxonomic groups. Key algorithmic steps include comparing candidate sequences against rRNA sequence profile hidden Markov models (HMMs) and covariance models of rRNA sequence and secondary-structure conservation, as well as other tests. Nine freely available rRNA databases created and maintained with Ribovore are used for checking incoming GenBank submissions and used by the browser interface at NCBI. Since 2018, Ribovore has been used to analyze more than 50 million prokaryotic SSU rRNA sequences submitted to GenBank, and to select at least 10,435 fungal rRNA RefSeq records from type material of 8350 taxa. Conclusion Ribovore combines single-sequence and profile-based methods to improve GenBank processing and analysis of rRNA sequences. It is a standalone, portable, and extensible software package for the alignment, classification and validation of rRNA sequences. Researchers planning on submitting SSU rRNA sequences to GenBank are encouraged to download and use Ribovore to analyze their sequences prior to submission to determine which sequences are likely to be automatically accepted into GenBank.


Sign in / Sign up

Export Citation Format

Share Document