scholarly journals Dead in the water: comment on “Development of an aquatic exposure assessment model for imidacloprid in sewage treatment plant discharges arising from use of veterinary medicinal products”

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Rosemary Perkins ◽  
Martin Whitehead ◽  
Dave Goulson

AbstractAnthe et al. (Environ Sci Eur 32:147, 2020. 10.1186/s12302-020-00424-4) develop a mathematical model to calculate the contribution of veterinary medicinal products (VMPs) to the levels of imidacloprid observed in the UK water monitoring programme. They find that VMPs make only a very small contribution to measured pollution levels, and that the estimated concentrations do not exceed ecotoxicological thresholds. However, shortcomings in methodology—including the implicit assumption that imidacloprid applied to pets is available for release to the environment for 24 h only and failure to incorporate site-specific sewage effluent data relating to measured levels—raise questions about their conclusions. Adjusting for these and other deficiencies, we find that their model appears consistent with the conclusion that emissions from VMPs may greatly exceed ecotoxicological thresholds and contribute substantially to imidacloprid waterway pollution in the UK. However, the model utilises imidacloprid emissions fractions for animals undergoing the different scenarios (for example, bathing) that are extrapolated from unpublished studies that do not clearly resemble the modelled scenarios, with insufficient evidence provided to support their derivation. As a result, we find that the model presented by Anthe et al. provides no reliable conclusions about the contribution of veterinary medicinal products to the levels of imidacloprid in UK waterways.

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Beatrice Valles-Ebeling ◽  
Jan Achtenhagen ◽  
Jackie Atkinson ◽  
Michael Starp

AbstractIn 2020, Anthe et al. published a newly developed model to predict imidacloprid surface water concentrations stemming from sewage treatment plant (STP) effluent as a consequence of the use of veterinary medicinal products containing imidacloprid in the UK (Anthe in Environ Sci Eur (2020) 32:147, https://doi.org/10.1186/s12302-020–00424-4). The modelled data indicate that these veterinary medicinal products make only a very small contribution to the levels of Imidacloprid observed in the UK water monitoring programme.The commentary by Perkins et al. (Perkins in Environ Sci Eur (2021) 33:88, https://doi.org/10.1186/s12302-021-00533-8) questioned the validity and conclusions of the modelling approach. We believe the modelling approach, which considered what we anticipated to be, the major exposure pathways, gives a realistic picture of the chronic emission via STPs to UK rivers.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mechthild Anthe ◽  
Beatrice Valles-Ebeling ◽  
Jan Achtenhagen ◽  
Martina Arenz-Leufen ◽  
Jackie Atkinson ◽  
...  

Abstract Background Imidacloprid is an active ingredient included in plant protection, biocidal and veterinary medicinal products (VMPs). VMPs containing Imidacloprid are formulated as spot-on products or collars and designed to protect pets, predominantly dogs and cats, from parasite infestation. Monitoring data collected under the Water Framework Directive between 2016 and 2018 showed detectable and varying levels of Imidacloprid in the UK surface water bodies. The aim of the work was to investigate the potential contribution of VMPs by developing a model for predicting the emissions from sewage treatment plants from the use of dog and cat spot-on and collar VMPs. Due to the absence of appropriate exposure models for VMPs, the model was built based on the principles of environmental exposure assessment for biocidal products. Results Three emission paths were considered to be the most likely routes for repeated emissions to waterways from the use of spot-on and collar VMPs, i.e., transfer to pet bedding followed by washing, washing/bathing of dogs, and walking dogs in the rain. The developed model was used to calculate the Imidacloprid concentrations in surface water after discharge from wastewater treatment plants. Realistic worst-case input parameters were deduced from sales and survey data and experimental studies. Modelled total concentrations in surface water for each pathway ranged from 0.84 to 4.8 ng/L. The calculated concentrations did not exceed the ecological thresholds for the most sensitive aquatic invertebrate organisms and were found to be much lower than the UK monitoring data for river water. For example, the calculated concentration from the bathing/washing of dogs was < 3% of the highest levels of Imidacloprid measured in surface waters. Conclusion In conclusion, a model has been successfully built and applied. The modelled data indicate that these VMPs make only a very small contribution to the levels of Imidacloprid observed in the UK water monitoring programme. Further, calculated concentrations do not exceed ecotoxicological threshold values indicating acceptable chronic safety to aquatic organisms.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mechthild Anthe ◽  
Beatrice Valles-Ebeling ◽  
Jan Achtenhagen ◽  
Martina Arenz-Leufen ◽  
Jackie Atkinson ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Chemosphere ◽  
2013 ◽  
Vol 93 (5) ◽  
pp. 757-765 ◽  
Author(s):  
Roger van Egmond ◽  
Chris Sparham ◽  
Colin Hastie ◽  
Dave Gore ◽  
Namrata Chowdhury

1993 ◽  
Vol 27 (5-6) ◽  
pp. 405-412 ◽  
Author(s):  
B. Chambers ◽  
J. Whitaker ◽  
A. F. Elvidge

In the UK there are over 7000 small works which treat the sewage from populations of less than 10,000. Many of these works are at risk of non-compliance with effluent quality consents and options for improving the standard of treatment are being pursued by many utilities. WRc and Anglian Water Services have developed designs for packaged sewage treatment plants to serve populations in the range of 1000-10,000. A demonstration plant has been constructed at the Waterbeach STW of Anglian Water to serve a population of about 6,500. Target effluent quality is 15:20:5mg/l of BOD, SS and ammonia nitrogen respectively on a 95 percentile basis. Following plant commissioning a process performance evaluation programme was commenced in February 1991. Nitrification was established after about 6 weeks of operation but suspended solids values have been affected by the presence of a stable foam on the surface of the aeration tank. Process modifications have reduced the effect of this phenomenon substantially and effluent quality has improved.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


2000 ◽  
Vol 36 (4) ◽  
pp. 161-171
Author(s):  
KENITSU KONNO ◽  
NAOKI ABE ◽  
YOSHIRO SATO ◽  
KOJI AKAMATSU ◽  
MAKOTO ABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document