scholarly journals iTRAQ-based quantitative proteomic analysis reveals the lateral meristem developmental mechanism for branched spike development in tetraploid wheat (Triticum turgidum L.)

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Shulin Chen ◽  
Juan Chen ◽  
Fu Hou ◽  
Yigao Feng ◽  
Ruiqi Zhang
Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 509-514 ◽  
Author(s):  
D. L. Klindworth ◽  
N. D. Williams ◽  
L. R. Joppa

The supernumerary spikelet (SS) trait of durum wheat (Triticum turgidum L.), including the four-rowed and ramified spike types, is characterized by an increased number of spikelets per spike. To determine the inheritance of this trait, the tetraploid ramified spike cultivar PI349056 was crossed reciprocally to normal-spike 'Langdon' durum, and the F1 was backcrossed to each parent. The F1, F2, F3, BC1F1, and BC1F2 were classified for SS expression. Additionally, PI349056 was crossed to the 'Langdon' 2D(2A) disomic substitution line to study linkage of SS genes. The SS trait was recessive to normal spike, and both four-rowed spike and ramified spike progeny were observed in the segregating generations. Segregation in F3 and BC1F2 families indicated that SS in PI349056 was quantitatively inherited, controlled by a major recessive gene and numerous minor genes. Normal-spiked plants selected in families homozygous for the major gene indicated that the major gene did not produce SS when the minor genes were absent. Selection of normal-spiked plants in the F3 and F4 of 'Langdon' 2D(2A) disomic substitution/PI349056 indicated that the minor SS genes were not linked to the major gene on chromosome 2A.Key words: Triticum, branched spike, ramified spike, four-rowed spike.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 515-520 ◽  
Author(s):  
D. L. Klindworth ◽  
N. D. Williams ◽  
L. R. Joppa

The supernumerary spikelet (SS) trait of durum wheat (Triticum turgidum L.), including the ramified and four-rowed spike traits, is characterized by an increased number of spikelets per spike. Chromosomal location of the SS gene(s) was determined by crossing the ramified spike line PI349056 to the set of 'Langdon' D-genome disomic substitution lines. Double monosomic F1 plants were backcrossed to PI349056 and the testcross F1 plants were classified for chromosome pairing and spike type. Segregation for spike type was observed in the testcross F2. Data indicated that the major SS gene was located on chromosome 2A. Subsequent crosses with the 'Langdon' 2A telosomics indicated that the major SS gene was located on the short arm of chromosome 2A. Segregation of the testcross F2 indicated that a minor SS gene was located on chromosome 2B. Results also indicated that inhibitors of SS may be located on the D-genome chromosomes and an additional experiment was designed to test this hypothesis. Eight D-genome monosomic addition lines were developed by backcrossing PI349056 from one to three times to plants containing D-genome univalents. The test populations contained two cytological types of plants, disomics having 14 pairs of durum chromosomes and D-genome monosomic additions having 14 pairs of durum chromosomes plus a D-genome monosome. Comparison of these two types of plants indicated that chromosome 2D (from 'Chinese Spring' wheat) had a strong inhibitor of SS expression.Key words: Triticum, branched spike, ramified spike, four-rowed spike, cytogenetics.


2021 ◽  
Vol 135 ◽  
pp. 204-216
Author(s):  
Dingding Lü ◽  
Ping Xu ◽  
Chengxiang Hou ◽  
Ruilin Li ◽  
Congwu Hu ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


Sign in / Sign up

Export Citation Format

Share Document