substitution line
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanwei Lu ◽  
Xianghui Xiao ◽  
Juwu Gong ◽  
Pengtao Li ◽  
Yan Zhao ◽  
...  

Fiber length is an important determinant of fiber quality, and it is a quantitative multi-genic trait. Identifying genes associated with fiber length is of great importance for efforts to improve fiber quality in the context of cotton breeding. Integrating transcriptomic information and details regarding candidate gene regions can aid in candidate gene identification. In the present study, the CCRI45 line and a chromosome segment substitution line (CSSL) with a significantly higher fiber length (MBI7747) were utilized to establish F2 and F2:3 populations. Using a high-density genetic map published previously, six quantitative trait loci (QTLs) associated with fiber length and two QTLs associated with fiber strength were identified on four chromosomes. Within these QTLs, qFL-A07-1, qFL-A12-2, qFL-A12-5, and qFL-D02-1 were identified in two or three environments and confirmed by a meta-analysis. By integrating transcriptomic data from the two parental lines and through qPCR analyses, four genes associated with these QTLs including Cellulose synthase-like protein D3 (CSLD3, GH_A12G2259 for qFL-A12-2), expansin-A1 (EXPA1, GH_A12G1972 for qFL-A12-5), plasmodesmata callose-binding protein 3 (PDCB3, GH_A12G2014 for qFL-A12-5), and Polygalacturonase (At1g48100, GH_D02G0616 for qFL-D02-1) were identified as promising candidate genes associated with fiber length. Overall, these results offer a robust foundation for further studies regarding the molecular basis for fiber length and for efforts to improve cotton fiber quality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Liu ◽  
Minghu Zhang ◽  
Xiaomei Jiang ◽  
Hui Li ◽  
Zhenjiao Jia ◽  
...  

Triticum boeoticum Boiss (AbAb, 2n = 2x = 14) is one of the sources of the blue grain trait controlled by blue aleurone layer 2 (Ba2). However, the underlying genes have not been cloned. In this study, a transcriptomic comparison between a blue-grained wheat-T. boeoticum substitution line and its wheat parent identified 41 unigenes related to anthocyanin biosynthesis and 29 unigenes related to transport. The bHLH transcription factor gene TbMYC4A showed a higher expression level in the blue-grained substitution line. TbMYC4A contained the three characteristic bHLH transcription factor domains (bHLH-MYC_N, HLH and ACT-like) and clustered with genes identified from other wheat lines with the blue grain trait derived from other Triticeae species. TbMYC4A overexpression confirmed that it was a functional bHLH transcription factor. The analysis of a TbMYC4A-specific marker showed that the gene was also present in T. boeoticum and T. monococcum with blue aleurone but absent in other Triticeae materials with white aleurone. These results indicate that TbMYC4A is a candidate gene of Ba2 controlling the blue aleurone trait. The isolation of TbMYC4A is helpful for further clarifying the genetic mechanism of the blue aleurone trait and is of great significance for breeding blue-grained wheat varieties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingzhu Li ◽  
Yanzhen Wang ◽  
Xiaojuan Liu ◽  
Xingfeng Li ◽  
Honggang Wang ◽  
...  

Thinopyrum ponticum (2n = 10x = 70) is a wild relative of wheat with high tolerance to both biotic and abiotic stresses; it has been wildly used in wheat genetic improvement. A disomic substitution line named SN19647 was derived from a cross between Triticum aestivum and the wheat–Th. ponticum partial amphiploid SNTE20 (2n = 8x = 56). It was evaluated for disease resistance and characterized via sequential fluorescence in situ hybridization (FISH)-genomic in situ hybridization (GISH) and molecular markers. The results showed that SN19647 carried resistance to both powdery mildew and leaf rust. It contained 42 chromosomes with a pair of wheat chromosome 1B replaced by a pair of JS chromosomes from Th. ponticum. In addition to chromosomal substitution events, structural variation also occurred on wheat chromosomes 2A, 5A, 6B, and 7B. Based on marker analysis, 19 markers specific to the JS chromosome were obtained, of which seventeen markers belonged to homoeologous group one. These results indicated that SN19647 was a 1JS (1B) substitution line. Compared with the known 1JS (1D) substitution line CH10A5, it was found that 17 markers generated different specific bands to Th. ponticum, confirming the novelty of the 1JS chromosome in SN19647. Therefore, SN19647, resistant to powdery mildew and leaf rust, was a novel 1JS (1B) substitution line that can be used in wheat genetic improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fan Yang ◽  
Qier Liu ◽  
Qin Wang ◽  
Ning Yang ◽  
Jun Li ◽  
...  

Durum wheat is one of the important food and cash crops. The main goals in current breeding programs are improving its low yield potential, kernel characteristics, and lack of resistance or tolerance to some biotic and abiotic stresses. In this study, a nascent synthesized hexaploid wheat Lanmai/AT23 is used as the female parent in crosses with its AB genome donor Lanmai. A tetraploid line YL-443 with supernumerary spikelets and high resistance to stripe rust was selected out from the pentaploid F7 progeny. Somatic analysis using multicolor fluorescence in situ hybridization (mc-FISH) revealed that this line is a disomic substitution line with the 4B chromosome pair of Lanmai replaced by the 4D chromosome pair of Aegilops tauschii AT23. Comparing with Lanmai, YL-443 shows an increase in the number of spikelets and florets per spike by 36.3 and 75.9%, respectively. The stripe rust resistance gene Yr28 carried on the 4D chromosome was fully expressed in the tetraploid background. The present 4D(4B) disomic substitution line YL-443 was distinguished from the previously reported 4D(4B) lines with the 4D chromosomes from Chinese Spring (CS). Our study demonstrated that YL-443 can be used as elite germplasm for durum wheat breeding targeting high yield potential and stripe rust resistance. The Yr28-specific PCR marker and the 4D chromosome-specific KASP markers together with its unique features of pubescent leaf sheath and auricles can be utilized for assisting selection in breeding.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhennan Xu ◽  
Feifei Wang ◽  
Zhiqiang Zhou ◽  
Qingchang Meng ◽  
Yanping Chen ◽  
...  

Maize rough dwarf disease (MRDD), caused by a virus, seriously affects maize quality and yield worldwide. MRDD can be most effectively controlled with disease-resistant hybrids of corn. Here, MRDD-resistant (Qi319) and -susceptible (Ye478) parental inbred maize lines and their 314 recombinant inbred lines (RILs) that were derived from a cross between them were evaluated across three environments. A stable resistance QTL, qMrdd2, was identified and mapped using BLUP values to a 0.55 Mb region between the markers MK807 and MK811 on chromosome 2 (B73 RefGen_v3), which was found to explain 8.6 to 11.0% of the total phenotypic variance in MRDD resistance. We validated the effect of qMrdd2 using a chromosome segment substitution line (CSSL) that was derived from a cross between maize inbred Qi319 as the MRDD resistance donor and Ye478 as the recipient. Disease severity index of the CSSL haplotype II harboring qMrdd2 was significantly lower than that of the susceptible parent Ye478. Subsequently, we fine-mapped qMrdd2 to a 315 kb region flanked by the markers RD81 and RD87 by testing recombinant-derived progeny using selfed backcrossed families. In this study, we identified a novel QTL for MRDD-resistance by combining the RIL and CSSL populations, which can be used to breed for MRDD resistant varieties of maize. Keywords: Maize, Maize rough dwarf disease, QTL, Fine-mapping, Recombinant inbred line, Chromosome segment substitution line.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Liangzhu Kang ◽  
Shoufen Dai ◽  
Zhongping Song ◽  
Qin Xiang ◽  
Yuanyuan Zuo ◽  
...  

2020 ◽  
Vol 47 (3) ◽  
pp. 451-461
Author(s):  
Wen-Qiang SHEN ◽  
Bing-Bing ZHAO ◽  
Guo-Ling YU ◽  
Feng-Fei LI ◽  
Xiao-Yan ZHU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document