scholarly journals The transcriptomic signature of low aggression in honey bees resembles a response to infection

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Clare C. Rittschof ◽  
Benjamin E. R. Rubin ◽  
Joseph H. Palmer

Abstract Background Behavior reflects an organism’s health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. Results Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. Conclusions Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.

2020 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. Conclusions: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


2019 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. Conclusions: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


2019 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacted both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain overlapped with that observed following acute predator threat, exposure to a high-aggression environment as an adult, or changes associated with adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens. In the fat body, and to a lesser degree the midgut, we find evidence of directional concordance consistent with the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of acute infection in low aggression individuals. Furthermore, we find little evidence that the brain molecular signature of aggression in the current study is enriched for genes modulated by either ephemeral or stable social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples, with no clear directional bias. Conclusions: Results support the hypothesis that low aggression resembles a molecular state associated with infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. Although these results are correlative, we find no evidence of acute infection in low aggression bees, suggesting the physiological state associated with low aggression may predispose bees to negative health outcomes. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


2019 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacted both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain overlapped with that observed following acute predator threat, exposure to a high-aggression environment as an adult, or changes associated with adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens. In the fat body, and to a lesser degree the midgut, we find evidence of directional concordance consistent with the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of acute infection in low aggression individuals. Furthermore, we find little evidence that the brain molecular signature of aggression in the current study is enriched for genes modulated by either ephemeral or stable social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples, with no clear directional bias. Conclusions: Results support the hypothesis that low aggression resembles a molecular state associated with infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. Although these results are correlative, we find no evidence of acute infection in low aggression bees, suggesting the physiological state associated with low aggression may predispose bees to negative health outcomes. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Wang ◽  
Guogang Dai ◽  
Ling Jiang ◽  
Shichuan Liao ◽  
Jiao Xia

Abstract Background Although the pathology of sciatica has been studied extensively, the transcriptional changes in the peripheral blood caused by sciatica have not been characterized. This study aimed to characterize the peripheral blood transcriptomic signature for sciatica. Methods We used a microarray to identify differentially expressed genes in the peripheral blood of patients with sciatica compared with that of healthy controls, performed a functional analysis to reveal the peripheral blood transcriptomic signature for sciatica, and conducted a network analysis to identify key genes that contribute to the observed transcriptional changes. The expression levels of these key genes were assessed by qRT-PCR. Results We found that 153 genes were differentially expressed in the peripheral blood of patients with sciatica compared with that of healthy controls, and 131 and 22 of these were upregulated and downregulated, respectively. A functional analysis revealed that these differentially expressed genes (DEGs) were strongly enriched for the inflammatory response or immunity. The network analysis revealed that a group of genes, most of which are related to the inflammatory response, played a key role in the dysregulation of these DEGs. These key genes are Toll-like receptor 4, matrix metallopeptidase 9, myeloperoxidase, cathelicidin antimicrobial peptide, resistin and Toll-like receptor 5, and a qRT-PCR analysis validated the higher transcript levels of these key genes in the peripheral blood of patients with sciatica than in that of healthy controls. Conclusion We revealed inflammatory characteristics that serve as a peripheral blood transcriptomic signature for sciatica and identified genes that are essential for mRNA dysregulation in the peripheral blood of patients with sciatica.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huili Qiao ◽  
Jingya Wang ◽  
Yuanzhuo Wang ◽  
Juanjuan Yang ◽  
Bofan Wei ◽  
...  

Abstract Background 20-hydroxyecdysone (20E) plays important roles in insect molting and metamorphosis. 20E-induced autophagy has been detected during the larval–pupal transition in different insects. In Bombyx mori, autophagy is induced by 20E in the larval fat body. Long non-coding RNAs (lncRNAs) function in various biological processes in many organisms, including insects. Many lncRNAs have been reported to be potential for autophagy occurrence in mammals, but it has not been investigated in insects. Results RNA libraries from the fat body of B. mori dissected at 2 and 6 h post-injection with 20E were constructed and sequenced, and comprehensive analysis of lncRNAs and mRNAs was performed. A total of 1035 lncRNAs were identified, including 905 lincRNAs and 130 antisense lncRNAs. Compared with mRNAs, lncRNAs had longer transcript length and fewer exons. 132 lncRNAs were found differentially expressed at 2 h post injection, compared with 64 lncRNAs at 6 h post injection. Thirty differentially expressed lncRNAs were common at 2 and 6 h post-injection, and were hypothesized to be associated with the 20E response. Target gene analysis predicted 6493 lncRNA-mRNA cis pairs and 42,797 lncRNA-mRNA trans pairs. The expression profiles of LNC_000560 were highly consistent with its potential target genes, Atg4B, and RNAi of LNC_000560 significantly decreased the expression of LNC_000560 and Atg4B. These results indicated that LNC_000560 was potentially involved in the 20E-induced autophagy of the fat body by regulating Atg4B. Conclusions This study provides the genome-wide identification and functional characterization of lncRNAs associated with 20E-induced autophagy in the fat body of B. mori. LNC_000560 and its potential target gene were identified to be related to 20-regulated autophagy in B. mori. These results will be helpful for further studying the regulatory mechanisms of lncRNAs in autophagy and other biological processes in this insect model.


1996 ◽  
Vol 18 (1-2) ◽  
pp. 102-114 ◽  
Author(s):  
Susan E. Fahrbach ◽  
Gene E. Robinson

Vestnik ◽  
2021 ◽  
pp. 190-195
Author(s):  
М.С. Кулбаева ◽  
А.Н. Курал ◽  
Л.Б. Умбетьярова ◽  
Н.Т. Аблайханова ◽  
Г.К. Атанбаева ◽  
...  

Человека давно интересует вопрос о том, как умственная нагрузка влияет на организм. Известно, что при длительной умственной работе преобразуется сила процессов возбуждения и торможения, изменяется соотношение между ними. С возникновением утомления в головном мозгу нарушаются взаимосвязи между корой больших полушарий и подкорковыми образованиями. При этом наблюдается снижение регулирующего влияния больших полушарий на все функции организма и уменьшение активизирующих воздействий подкорковых отделов мозга. Кроме того, длительное сидячие положение, состояние низкой двигательной активности ведут к значительному уменьшению центростремительных импульсов с рецепторов мышц, сухожилий, суставов. В исследовании приняли участие 17 относительно здоровые, имеющие стабильное физиологическое состояние девушек-студенток в возрасте от 21 до 25 лет. Для исследования были взяты 16 биологически активных точек на стандартных меридианах, связаных с определенным органом. Для оценки физиологического состояния органов до и после умственной нагрузки были исследованы показатели ЭП БАТ на коже. Выявлено снижение показателей каждого органа после умственной нагрузки по сравнению с показателями до ее выполнения со статистической достоверностью во всех исследуемых органах (р<0,05). Особенно низкие значения показателей ЭП БАТ после умственной нагрузки были выявлены в биоактивных точках меридиана печени F.3 Тай-Чун, меридиана толстой кишки GI.5 Ян-Си и GI.4 Хэ-Гу, меридиана сердца С.7 Шэнь-Мэнь, меридиана тонкой кишки IG.1 Шао-Цзе и IG.2 Цянь-Гу, меридиана почек R.1 Юн-Цюань и Р.2 Жань-Гу. Humans has long been interested in the question of how mental activity affects the body It is known that with prolonged mental work, the strength of the processes of excitation and inhibition is transformed, the ratio between them changes. With the onset of fatigue in the brain, the relationship between the cerebral cortex and subcortical formations is disrupted. At the same time, there is a decrease in the regulatory influence of the large hemispheres on all body functions and a decrease in the activating effects of the subcortical parts of the brain. In addition, prolonged sitting, a state of low motor activity leads to a significant decrease in centripetal impulses from the receptors of muscles, tendons, and joints. The study involved 17 relatively healthy, stable physiological condition of female students aged 21 to 25 years. For the study, 16 biologically active points were taken from standard meridians associated with a specific organ. To assess the physiological state of the organs before and after the load of mental labor, the indicators of EC BAP on the skin. A decrease in the indicators of each organ after mental labor was revealed in comparison with the indicators before mental labor with statistical reliability in all the studied organs (p˂0.05). Especially low values of the EC BAP values after a load of mental labor were found in the bioactive points of the liver meridian F. 3 Tai-Chun, the colon meridian GI.5 Yang-Si and GI. 4 He-Gu, the heart meridian C. 7 Shen-Men, the small intestine meridian IG.1 Shao-tse and IG.2 Qian-Gu, the meridian of the kidneys R. 1 Yun-Chuan and R. 2 Zhan-Gu.


2021 ◽  
pp. 074873042110458
Author(s):  
Carson V. Fulgham ◽  
Austin P. Dreyer ◽  
Anita Nasseri ◽  
Asia N. Miller ◽  
Jacob Love ◽  
...  

Many behaviors exhibit ~24-h oscillations under control of an endogenous circadian timing system that tracks time of day via a molecular circadian clock. In the fruit fly, Drosophila melanogaster, most circadian research has focused on the generation of locomotor activity rhythms, but a fundamental question is how the circadian clock orchestrates multiple distinct behavioral outputs. Here, we have investigated the cells and circuits mediating circadian control of feeding behavior. Using an array of genetic tools, we show that, as is the case for locomotor activity rhythms, the presence of feeding rhythms requires molecular clock function in the ventrolateral clock neurons of the central brain. We further demonstrate that the speed of molecular clock oscillations in these neurons dictates the free-running period length of feeding rhythms. In contrast to the effects observed with central clock cell manipulations, we show that genetic abrogation of the molecular clock in the fat body, a peripheral metabolic tissue, is without effect on feeding behavior. Interestingly, we find that molecular clocks in the brain and fat body of control flies gradually grow out of phase with one another under free-running conditions, likely due to a long endogenous period of the fat body clock. Under these conditions, the period of feeding rhythms tracks with molecular oscillations in central brain clock cells, consistent with a primary role of the brain clock in dictating the timing of feeding behavior. Finally, despite a lack of effect of fat body selective manipulations, we find that flies with simultaneous disruption of molecular clocks in multiple peripheral tissues (but with intact central clocks) exhibit decreased feeding rhythm strength and reduced overall food intake. We conclude that both central and peripheral clocks contribute to the regulation of feeding rhythms, with a particularly dominant, pacemaker role for specific populations of central brain clock cells.


Sign in / Sign up

Export Citation Format

Share Document