corn borer
Recently Published Documents


TOTAL DOCUMENTS

2121
(FIVE YEARS 122)

H-INDEX

54
(FIVE YEARS 4)

2022 ◽  
Vol 21 (2) ◽  
pp. 474-485
Author(s):  
Yu ZHANG ◽  
Bin YANG ◽  
Jie YU ◽  
Bao-ping PANG ◽  
Gui-rong WANG

2022 ◽  
Author(s):  
Yang Liu ◽  
Siping Han ◽  
Shuo Yang ◽  
Ziqi Chen ◽  
Yuejia Yin ◽  
...  

Abstract Though cry gene transformed crops have successfully revolutionized modern agriculture, it is still necessary to discover new Cry proteins to overcome potential threatens from the development of resistant insect populations. We swapped domain-IIIs with various Cry proteins and engineered seven chimeric proteins, aiming to produce new engineered hybrid insecticidal proteins. Seven recombinant proteins were expressed in Escherichia coli. Three proteins exhibited high toxicity against Asian corn borer in dietary exposure assays. Three hybrid proteins were further transformed to rice (cv. Jijing88) to determine their insecticidal activity. Cry1Ab/Gc hybrid proteins, Cry1Ab being replaced by the domain-III of Cry1Gc, showed significantly more toxic against rice stem borer than others. Furthermore, Cry1Ab/Gc gene was transformed into maize (cv. HiII), then backcrossed into commercial maize inbred lines (cv. Ji853 and Y822), and formulated into Xiangyu 998 hybrid to evaluate their commercial value. Transgenic maize performed significant resistance improvement to the Asian corn borer without affecting the yield, and this new protein did not have adverse effects on the environment. Our result proved domain-swapped could be used as an efficient method for exploring new cry genes and engineered hybrid insecticidal protein. Cry1Ab/Gc provides a new tool for Lepidopteran insects resistant management in rice and maize.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 70
Author(s):  
Yu Wang ◽  
Yang-Yang Hou ◽  
Giovanni Benelli ◽  
Nicolas Desneux ◽  
Asad Ali ◽  
...  

The Asian corn borer (ACB), Ostrinia furnicalis, is a serious corn pest in south-east Asia, causing huge economic losses every year. Trichogramma dendrolimi and Trichogramma ostriniae, two egg parasitoids, have previously been identified as key biological control agents. To determine the age impact of ACB eggs on their effective biocontrol potential, herein we compared the biological parameters (i.e., number of parasitized eggs, emergence, developmental time, and sex ratio) of both parasitoids on ACB eggs of various ages (i.e., 0–4, 4–8, 8–12, 12–16, 16–24, 24–36, and 36–48 h old), respectively. Our results showed that the age of ACB eggs had a significant impact on the parasitization activity of T. dendrolimi in both choice and no-choice conditions. Trichogramma dendrolimi preferred to parasitize 0–8-h-old ACB eggs, and its parasitization dramatically declined on ACB eggs older than 8 h under choice and no-choice conditions. On the other hand, T. ostriniae showed high preference to parasitize all tested ACB egg ages. The age of ACB eggs had no significant impact on the parasitization of T. ostriniae under choice and no-choice conditions. Furthermore, the female progeny of T. dendrolimi decreased as the age of ACB increased, while no differences were found in female progeny of T. ostriniae. Trichogramma ostriniae also developed faster on each ACB egg age group in comparison with T. dendrolimi. Overall, the age of ACB eggs had a significant impact on T. dendrolimi performance, leading us to conclude that T. ostriniae is more effective than T. dendrolimi as a biocontrol agent of the ACB.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 677
Author(s):  
Dimitrios Kontogiannatos ◽  
Luc Swevers ◽  
Anna Kourti

RNA interference (RNAi) is a transforming technology with high potential for practical applications in biology, including specific and safe insect pest control. For developing RNAi-based pest-control products no general recommendations exist and the best strategy needs to be determined for each insect pest separately on a case-by-case basis. In this research, the potential of silencing the genes encoding the subunits of the ecdysone receptor complex, EcR and Ultraspiracle (USP) by RNAi was evaluated in the corn borer, Sesamia nonagrioides, using different delivery approaches and targeting different developmental stages. In conjunction with our previous research it is demonstrated that prepupae are sensitive to RNAi triggered by dsRNA injection and that feeding of dsRNA-expressing bacteria throughout S. nonagrioides’ larval life can lead to limited developmental malformations with no potent insecticidal results. Our results, consistent with previous studies, indicated a great fluctuation of exogenous RNAi effectiveness in the Lepidopteran species, suggesting that further factors should be taken into consideration in order to expand this very promising field into the ‘’RNAi-resistant’’ insect species.


2021 ◽  
Vol 22 (23) ◽  
pp. 13045
Author(s):  
Yin Tang ◽  
Jingfei Guo ◽  
Tiantao Zhang ◽  
Shuxiong Bai ◽  
Kanglai He ◽  
...  

WRKY transcription factors comprise one of the largest gene families and serve as key regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided into seven subgroups (groups I, IIa–e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional regulation prediction showed that six key WRKY genes contribute to four major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA) biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression levels were highly correlated with predicted target genes, suggesting that these genes have important functions in the response to O. furnacalis. Our results provide a comprehensive understanding of the WRKY gene family based on the new assembly of the maize genome and lay the foundation for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses against O. furnacalis in the field.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1067
Author(s):  
Dan-Dan Zhang

It remains a conundrum in the evolution of sexual communication how the signals and responses can co-ordinate the changes during speciation. The genus Ostrinia contains several closely related species as well as distinctive strains with pheromone polymorphism and represents an example of ongoing speciation. Extensive studies in the genus, especially in the species the European corn borer O. nubilalis (ECB), the Asian corn borer O. furnacalis (ACB) and the adzuki bean borer O. scapulalis (ABB), have provided valuable insights into the evolution of sex pheromone communication. This review presents a comprehensive overview of the research on pheromone communication in different Ostrinia species over the past four decades, including pheromone identification and biosynthesis, the ligand profiles of pheromone receptor (PR) genes, the physiology of peripheral olfactory sensory neurons (OSNs) and the projection pattern to the antennal lobe. By integrating and comparing the closely related Ostrinia species and strains, it provides an evolutionary perspective on the sex pheromone communication in moths in general and also outlines the outstanding questions that await to be elucidated by future studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Željko D. Popović ◽  
Vítězslav Maier ◽  
Miloš Avramov ◽  
Iva Uzelac ◽  
Snežana Gošić-Dondo ◽  
...  

The European corn borer Ostrinia nubilalis is a pest species, whose fifth instar larvae gradually develop cold hardiness during diapause. The physiological changes underlying diapause progression and cold hardiness development are still insufficiently understood in insects. Here, we follow a complex of changes related to energy metabolism during cold acclimation (5°C) of diapausing larvae and compare this to warm-acclimated (22°C) and non-diapause controls. Capillary electrophoresis of nucleotides and coenzymes has shown that in gradually cold-acclimated groups concentrations of ATP/ADP and, consequently, energy charge slowly decrease during diapause, while the concentration of AMP increases, especially in the first months of diapause. Also, the activity of cytochrome c oxidase (COX), as well as the concentrations of NAD+ and GMP, decline in cold-acclimated groups, until the latter part of diapause, when they recover. Relative expression of NADH dehydrogenase (nd1), coenzyme Q-cytochrome c reductase (uqcr), COX, ATP synthase (atp), ADP/ATP translocase (ant), and prohibitin 2 (phb2) is supressed in cold-acclimated larvae during the first months of diapause and gradually increases toward the termination of diapause. Contrary to this, NADP+ and UMP levels significantly increased in the first few months of diapause, after gradual cold acclimation, which is in connection with the biosynthesis of cryoprotective molecules, as well as regeneration of small antioxidants. Our findings evidence the existence of a cold-induced energy-saving program that facilitates long-term maintenance of larval diapause, as well as gradual development of cold hardiness. In contrast, warm acclimation induced faster depletion of ATP, ADP, UMP, NAD+, and NADP+, as well as higher activity of COX and generally higher expression of all energy-related genes in comparison to cold-acclimated larvae. Moreover, such unusually high metabolic activity, driven by high temperatures, lead to premature mortality in the warm-acclimated group after 2 months of diapause. Thus, our findings strongly support the importance of low temperature exposure in early diapause for gradual cold hardiness acquisition, successful maintenance of the resting state and return to active development. Moreover, they demonstrate potentially adverse effects of global climate changes and subsequent increase in winter temperatures on cold-adapted terrestrial organisms in temperate and subpolar regions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lise Pingault ◽  
Saumik Basu ◽  
Prince Zogli ◽  
W. Paul Williams ◽  
Nathan Palmer ◽  
...  

The European corn borer (ECB; Ostrinia nubilalis) is an economically damaging insect pest of maize (Zea mays L.), an important cereal crop widely grown globally. Among inbred lines, the maize genotype Mp708 has shown resistance to diverse herbivorous insects, although several aspects of the defense mechanisms of Mp708 plants are yet to be explored. Here, the changes in root physiology arising from short-term feeding by ECB on the shoot tissues of Mp708 plants was evaluated directly using transcriptomics, and indirectly by monitoring changes in growth of western corn rootworm (WCR; Diabrotica virgifera virgifera) larvae. Mp708 defense responses negatively impacted both ECB and WCR larval weights, providing evidence for changes in root physiology in response to ECB feeding on shoot tissues. There was a significant downregulation of genes in the root tissues following short-term ECB feeding, including genes needed for direct defense (e.g., proteinase inhibitors and chitinases). Our transcriptomic analysis also revealed specific regulation of the genes involved in hormonal and metabolite pathways in the roots of Mp708 plants subjected to ECB herbivory. These data provide support for the long-distance signaling-mediated defense in Mp708 plants and suggest that altered metabolite profiles of roots in response to ECB feeding of shoots likely negatively impacted WCR growth.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 780
Author(s):  
María Arias-Martín ◽  
Miriam Haidukowski ◽  
Gema P. Farinós ◽  
Belén Patiño

Maize expressing Cry1Ab insecticidal toxin (Bt maize) is an effective method to control Sesamia nonagrioides and Ostrinia nubilalis, the most damaging corn borers of southern Europe. In this area, maize is prone to Fusarium infections, which can produce mycotoxins that pose a serious risk to human and animal health, causing significant economic losses in the agrifood industry. To investigate the influence of corn borer damage on the presence of Fusarium species and their mycotoxins, Bt maize ears and insect-damaged ears of non-Bt maize were collected from commercial fields in three Bt maize growing areas in Spain, and differences in contamination were assessed. Additionally, larvae of both borer species were collected to evaluate their role as vectors of these molds. Non-Bt maize ears showed significantly higher presence of F. verticillioides, F. proliferatum, and F. subglutinans than Bt maize ears. For the first time, Fusarium species have been isolated from larvae of the two species. The most frequently found mycotoxins in ears were fumonisins, with non-Bt ears being significantly more contaminated than those of Bt maize. High levels of fumonisins were shown to correlate with the occurrence of corn borers in the ear and the presence of F. verticillioides and F. proliferatum.


Sign in / Sign up

Export Citation Format

Share Document