scholarly journals Analysis of two mechanisms of telomere maintenance based on the theory of g-Networks and stochastic automata networks

BMC Genomics ◽  
2020 ◽  
Vol 21 (S9) ◽  
Author(s):  
Kyung Hyun Lee ◽  
Marek Kimmel

Abstract * Background Telomeres, which are composed of repetitive nucleotide sequences at the end of chromosomes, behave as a division clock that measures replicative senescence. Under the normal physiological condition, telomeres shorten with each cell division, and cells use the telomere lengths to sense the number of divisions. Replicative senescence has been shown to occur at approximately 50–70 cell divisions, which is termed the Hayflick’s limit. However, in cancer cells telomere lengths are stabilized, thereby allowing continual cell replication by two known mechanisms: activation of telomerase and Alternative Lengthening of Telomeres (ALT). The connections between the two mechanisms are complicated and still poorly understood. * Results In this research, we propose that two different approaches, G-Networks and Stochastic Automata Networks, which are stochastic models motivated by queueing theory, are useful to identify a set of genes that play an important role in the state of interest and to infer their previously unknown correlation by obtaining both stationary and joint transient distributions of the given system. Our analysis using G-Network detects five statistically significant genes (CEBPA, FOXM1, E2F1, c-MYC, hTERT) with either mechanism, contrasted to normal cells. A new algorithm is introduced to show how the correlation between two genes of interest varies in the transient state according not only to each mechanism but also to each cell condition. * Conclusions This study expands our existing knowledge of genes associated with mechanisms of telomere maintenance and provides a platform to understand similarities and differences between telomerase and ALT in terms of the correlation between two genes in the system. This is particularly important because telomere dynamics plays a major role in many physiological and disease processes, including hematopoiesis.

2019 ◽  
Author(s):  
Aurora Irene Idilli ◽  
Emilio Cusanelli ◽  
Francesca Pagani ◽  
Emanuela Kerschbamer ◽  
Francesco Berardinelli ◽  
...  

ABSTRACTThe activation of a telomere maintenance mechanism (TMM) is an essential step in cancer progression to escape replicative senescence and apoptosis. Paediatric brain tumors frequently exhibit Alternative Lengthening of Telomere (ALT) as active TMM, but the mechanisms involved in the induction of ALT in brain tumor cells are not clear.Here, we report a model of juvenile zebrafish brain tumor that progressively develops ALT. We discovered that reduced expression of tert and increase in Terra expression precedes ALT development. Additionally, tumors show persistent telomeric DNA damage and loss of heterochromatin marks at chromosome ends. Surprisingly, expression of telomerase reverts ALT features. Comparative analysis of gene expression after the rescue of ALT with telomerase and analysis of telomerase positive paediatric brain cancers showed increase of telomeric heterochromatin and maintenance of telomere length compared to ALT tumors, with reduced expression of genes of the pre-replicative complex as hallmark. Thus our study identifies telomere maintenance mechanisms as major drivers of telomeric DNA replication and chromatin status in brain cancers.


2018 ◽  
Vol 16 (1) ◽  
pp. 986-998
Author(s):  
Chun Wen ◽  
Ting-Zhu Huang ◽  
Xian-Ming Gu ◽  
Zhao-Li Shen ◽  
Hong-Fan Zhang ◽  
...  

AbstractStochastic Automata Networks (SANs) have a large amount of applications in modelling queueing systems and communication systems. To find the steady state probability distribution of the SANs, it often needs to solve linear systems which involve their generator matrices. However, some classical iterative methods such as the Jacobi and the Gauss-Seidel are inefficient due to the huge size of the generator matrices. In this paper, the multipreconditioned GMRES (MPGMRES) is considered by using two or more preconditioners simultaneously. Meanwhile, a selective version of the MPGMRES is presented to overcome the rapid increase of the storage requirements and make it practical. Numerical results on two models of SANs are reported to illustrate the effectiveness of these proposed methods.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabine A. Hartlieb ◽  
Lina Sieverling ◽  
Michal Nadler-Holly ◽  
Matthias Ziehm ◽  
Umut H. Toprak ◽  
...  

AbstractTelomere maintenance by telomerase activation or alternative lengthening of telomeres (ALT) is a major determinant of poor outcome in neuroblastoma. Here, we screen for ALT in primary and relapsed neuroblastomas (n = 760) and characterize its features using multi-omics profiling. ALT-positive tumors are molecularly distinct from other neuroblastoma subtypes and enriched in a population-based clinical sequencing study cohort for relapsed cases. They display reduced ATRX/DAXX complex abundance, due to either ATRX mutations (55%) or low protein expression. The heterochromatic histone mark H3K9me3 recognized by ATRX is enriched at the telomeres of ALT-positive tumors. Notably, we find a high frequency of telomeric repeat loci with a neuroblastoma ALT-specific hotspot on chr1q42.2 and loss of the adjacent chromosomal segment forming a neo-telomere. ALT-positive neuroblastomas proliferate slowly, which is reflected by a protracted clinical course of disease. Nevertheless, children with an ALT-positive neuroblastoma have dismal outcome.


2003 ◽  
Vol 53 (1) ◽  
pp. 43-69 ◽  
Author(s):  
Oleg Gusak ◽  
Tuğrul Dayar ◽  
Jean-Michel Fourneau

1995 ◽  
pp. 217-235 ◽  
Author(s):  
Jean-Michel Fourneau ◽  
Franck Quessette

2019 ◽  
Vol 5 (10) ◽  
pp. eaax6366 ◽  
Author(s):  
Mafei Xu ◽  
Jun Qin ◽  
Leiming Wang ◽  
Hui-Ju Lee ◽  
Chung-Yang Kao ◽  
...  

Alternative lengthening of telomeres (ALT) is known to use homologous recombination (HR) to replicate telomeric DNA in a telomerase-independent manner. However, the detailed process remains largely undefined. It was reported that nuclear receptors COUP-TFII and TR4 are recruited to the enriched GGGTCA variant repeats embedded within ALT telomeres, implicating nuclear receptors in regulating ALT activity. Here, we identified a function of nuclear receptors in ALT telomere maintenance that involves a direct interaction between COUP-TFII/TR4 and FANCD2, the key protein in the Fanconi anemia (FA) DNA repair pathway. The COUP-TFII/TR4-FANCD2 complex actively induces the DNA damage response by recruiting endonuclease MUS81 and promoting the loading of the PCNA-POLD3 replication complex in ALT telomeres. Furthermore, the COUP-TFII/TR4-mediated ALT telomere pathway does not require the FA core complex or the monoubiquitylation of FANCD2, key steps in the canonical FA pathway. Thus, our findings reveal that COUP-TFII/TR4 regulates ALT telomere maintenance through a novel noncanonical FANCD2 pathway.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 949 ◽  
Author(s):  
Marta Recagni ◽  
Joanna Bidzinska ◽  
Nadia Zaffaroni ◽  
Marco Folini

Telomere maintenance mechanisms (i.e., telomerase activity (TA) and the alternative lengthening of telomere (ALT) mechanism) contribute to tumorigenesis by providing unlimited proliferative capacity to cancer cells. Although the role of either telomere maintenance mechanisms seems to be equivalent in providing a limitless proliferative ability to tumor cells, the contribution of TA and ALT to the clinical outcome of patients may differ prominently. In addition, several strategies have been developed to interfere with TA in cancer, including Imetelstat that has been the first telomerase inhibitor tested in clinical trials. Conversely, the limited information available on the molecular underpinnings of ALT has hindered thus far the development of genuine ALT-targeting agents. Moreover, whether anti-telomerase therapies may be hampered or not by possible adaptive responses is still debatable. Nonetheless, it is plausible hypothesizing that treatment with telomerase inhibitors may exert selective pressure for the emergence of cancer cells that become resistant to treatment by activating the ALT mechanism. This notion, together with the evidence that both telomere maintenance mechanisms may coexist within the same tumor and may distinctly impinge on patients’ outcomes, suggests that ALT may exert an unexpected role in tumor biology that still needs to be fully elucidated.


Sign in / Sign up

Export Citation Format

Share Document