telomeric repeat
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 45)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Vol 119 (1) ◽  
pp. e2116159118
Author(s):  
Woo Suk Choi ◽  
Peter J. Weng ◽  
Wei Yang

Telomerase synthesizes telomeres at the ends of linear chromosomes by repeated reverse transcription from a short RNA template. Crystal structures of Tribolium castaneum telomerase reverse transcriptase (tcTERT) and cryoelectron microscopy (cryo-EM) structures of human and Tetrahymena telomerase have revealed conserved features in the reverse-transcriptase domain, including a cavity near the DNA 3′ end and snug interactions with the RNA template. For the RNA template to translocate, it needs to be unpaired and separated from the DNA product. Here we investigate the potential of the structural cavity to accommodate a looped-out DNA bulge and enable the separation of the RNA/DNA hybrid. Using tcTERT as a model system, we show that a looped-out telomeric repeat in the DNA primer can be accommodated and extended by tcTERT but not by retroviral reverse transcriptase. Mutations that reduce the cavity size reduce the ability of tcTERT to extend the looped-out DNA substrate. In agreement with cryo-EM structures of telomerases, we find that tcTERT requires a minimum of 4 bp between the RNA template and DNA primer for efficient DNA synthesis. We also have determined the ternary-complex structure of tcTERT including a downstream RNA/DNA hybrid at 2.0-Å resolution and shown that a downstream RNA duplex, equivalent to the 5′ template-boundary element in telomerase RNA, enhances the efficiency of telomere synthesis by tcTERT. Although TERT has a preformed active site without the open-and-closed conformational changes, it contains cavities to accommodate looped-out RNA and DNA. The flexible RNA–DNA binding likely underlies the processivity of telomeric repeat addition.


2021 ◽  
Author(s):  
Meng Xu ◽  
Tafadzwa Chigumira ◽  
Ziheng Chen ◽  
Jason Tones ◽  
Rongwei Zhao ◽  
...  

AbstractTERRA, TElomeric Repeat-containing RNA, is a long non-coding RNA transcribed from telomeres. Emerging evidence indicates that TERRA regulates telomere maintenance and chromosome end protection in normal and cancerous cells. However, the mechanism of how TERRA contributes to telomere functions is still unclear, partially owing to the shortage of approaches to track and manipulate endogenous TERRA molecules in live cells. Here, we developed a method to visualize TERRA in live cells via a combination of CRISPR Cas13 RNA labeling and Suntag technology. Single-particle tracking reveals that TERRA foci undergo anomalous diffusion in a manner that depends on the timescale and telomeric localization. Furthermore, we used a chemically-induced protein dimerization system to manipulate TERRA subcellular localization in live cells. Overall, our approaches to monitor and control TERRA locations in live cells provide powerful tools to better understand its roles in telomere maintenance and genomic integrity.


2021 ◽  
Vol 9 (12) ◽  
pp. 2489
Author(s):  
Yu You ◽  
Tereza Vychodil ◽  
Giulia Aimola ◽  
Renato L. Previdelli ◽  
Thomas W. Göbel ◽  
...  

Marek’s disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes a devastating neoplastic disease in chickens. MDV has been shown to integrate its genome into the telomeres of latently infected and tumor cells, which is crucial for efficient tumor formation. Telomeric repeat arrays present at the ends of the MDV genome facilitate this integration into host telomeres; however, the integration mechanism remains poorly understood. Until now, MDV integration could only be investigated qualitatively upon infection of chickens. To shed further light on the integration mechanism, we established a quantitative integration assay using chicken T cell lines, the target cells for MDV latency and transformation. We optimized the infection conditions and assessed the establishment of latency in these T cells. The MDV genome was efficiently maintained over time, and integration was confirmed in these cells by fluorescence in situ hybridization (FISH). To assess the role of the two distinct viral telomeric repeat arrays in the integration process, we tested various knockout mutants in our in vitro integration assay. Efficient genome maintenance and integration was thereby dependent on the presence of the telomeric repeat arrays in the virus genome. Taken together, we developed and validated a novel in vitro integration assay that will shed light on the integration mechanism of this highly oncogenic virus into host telomeres.


2021 ◽  
Author(s):  
Jussara Amato ◽  
Simona Marzano ◽  
Bruno Pagano ◽  
Nunzia Iaccarino ◽  
Anna Di Porzio ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Satoru Ide ◽  
Asuka Sasaki ◽  
Yusuke Kawamoto ◽  
Toshikazu Bando ◽  
Hiroshi Sugiyama ◽  
...  

Abstract Background Knowing chromatin components at a DNA regulatory element at any given time is essential for understanding how the element works during cellular proliferation, differentiation and development. A region-specific chromatin purification is an invaluable approach to dissecting the comprehensive chromatin composition at a particular region. Several methods (e.g., PICh, enChIP, CAPTURE and CLASP) have been developed for isolating and analyzing chromatin components. However, all of them have some shortcomings in identifying non-coding RNA associated with DNA regulatory elements. Results We have developed a new approach for affinity purification of specific chromatin segments employing an N-methyl pyrrole (P)-N-methylimidazole (I) (PI) polyamide probe, which binds to a specific sequence in double-stranded DNA via Watson–Crick base pairing as a minor groove binder. This new technique is called proteomics and RNA-omics of isolated chromatin segments (PI-PRICh). Using PI-PRICh to isolate mouse and human telomeric components, we found enrichments of shelterin proteins, the well-known telomerase RNA component (TERC) and telomeric repeat-containing RNA (TERRA). When PI-PRICh was performed for alternative lengthening of telomere (ALT) cells with highly recombinogenic telomeres, in addition to the conventional telomeric chromatin, we obtained chromatin regions containing telomeric repeat insertions scattered in the genome and their associated RNAs. Conclusion PI-PRICh reproducibly identified both the protein and RNA components of telomeric chromatin when targeting telomere repeats. PI polyamide is a promising alternative to simultaneously isolate associated proteins and RNAs of sequence-specific chromatin regions under native conditions, allowing better understanding of chromatin organization and functions within the cell.


2021 ◽  
Vol 22 (19) ◽  
pp. 10315
Author(s):  
Simona Marzano ◽  
Bruno Pagano ◽  
Nunzia Iaccarino ◽  
Anna Di Porzio ◽  
Stefano De Tito ◽  
...  

DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2358
Author(s):  
Nicole Bon Campomayor ◽  
Nomar Espinosa Waminal ◽  
Byung Yong Kang ◽  
Thi Hong Nguyen ◽  
Soo-Seong Lee ◽  
...  

Intergeneric crosses between Brassica species and Raphanus sativus have produced crops with prominent shoot and root systems of Brassica and R. sativus, respectively. It is necessary to discriminate donor genomes when studying cytogenetic stability in distant crosses to identify homologous chromosome pairing, and microsatellite repeats have been used to discriminate subgenomes in allopolyploids. To identify genome-specific microsatellites, we explored the microsatellite content in three Brassica species (B. rapa, AA, B. oleracea, CC, and B. nigra, BB) and R. sativus (RR) genomes, and validated their genome specificity by fluorescence in situ hybridization. We identified three microsatellites showing A, C, and B/R genome specificity. ACBR_msat14 and ACBR_msat20 were detected in the A and C chromosomes, respectively, and ACBR_msat01 was detected in B and R genomes. However, we did not find a microsatellite that discriminated the B and R genomes. The localization of ACBR_msat20 in the 45S rDNA array in ×Brassicoraphanus 977 corroborated the association of the 45S rDNA array with genome rearrangement. Along with the rDNA and telomeric repeat probes, these microsatellites enabled the easy identification of homologous chromosomes. These data demonstrate the utility of microsatellites as probes in identifying subgenomes within closely related Brassica and Raphanus species for the analysis of genetic stability of new synthetic polyploids of these genomes.


Author(s):  
Thi Hong Nguyen ◽  
Nomar Espinosa Waminal ◽  
Do Sin Lee ◽  
Remnyl Joyce Pellerin ◽  
Thanh Dat Ta ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1556
Author(s):  
Minoo Rassoulzadegan ◽  
Ali Sharifi-Zarchi ◽  
Leila Kianmehr

Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular extract without antibody that allows their physical isolation and determination of their RNA nucleotide sequence. We then define in the normal mouse and human sperm genomes the notion of stable DNA associated RNA terminal R-loop complexes, including TERRA molecules synthesized from local promoters of every chromosome. Furthermore, the first strong evidence of all telomeric structures, applied additionally to the whole murine sperm genome compared to the testes, showed reproducible R-loop complexes of the whole genome and suggesting a defined profile in the sperm genome for the next generation.


Author(s):  
Insan Habib ◽  
Shama Khan ◽  
Taj Mohammad ◽  
Afzal Hussain ◽  
Mohamed F. Alajmi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document