scholarly journals Ruyiping formula inhibits metastasis via the microRNA-134-SLUG axis in breast cancer

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziwei Jiang ◽  
Lixia Pei ◽  
Ying Xie ◽  
Qun Ye ◽  
Xiaoqiang Liang ◽  
...  

Abstract Background Metastasis is the leading cause of death among breast cancer patients. MicroRNA-134 has been reported to have a tumor-suppressive role in breast cancer. Ruyiping (RYP), a traditional Chinese formula, has been shown with the ability to reduce breast cancer metastasis in pre-clinical studies. This present study was designed to examine whether miR-134 was involved in RYP-inhibited breast cancer metastasis. Methods The expression of SLUG, E-Cadherin, N-Cadherin and miR-134 in MDA-MB-231 and 4 T1 cells treated with RYP or vehicle control were determined by quantitative realtime-PCR and western blot. Invasiveness determined by transwell assay as well as SLUG gene expression determined by qPCR were detected in cells transfected with chemically synthesized miR-134 mimics or inhibitors. BALB/c mice were injected with 4 T1 cells orthotopically and fed with RYP through gavage. Breast tumor growth, metastasis and tumor expression of EMT markers were detected. Results Compared with the control, Ruyiping formula significantly inhibited SLUG-regulated breast cancer cells invasion. MiR-134 was induced by RYP in vitro and in vivo and was able to suppress SLUG by targeting its 3’UTR. RYP suppressed SLUG expression and cell invasion through miR-134. In 4 T1 tumor-bearing mice, RYP significantly inhibited 4 T1 tumor growth and lung metastasis, increased the levels of miR-134 and epithelial marker while decreased the levels of SLUG and mesenchymal marker. Conclusion Our data uncovered that Ruyiping formula exerts an anti-metastatic activity against breast cancer cells by regulating SLUG through miR-134. MiR-134-SLUG axis might be a promising strategy in breast cancer therapy.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Xue Kong ◽  
Juan Li ◽  
Yanru Li ◽  
Weili Duan ◽  
Qiuchen Qi ◽  
...  

AbstractBreast cancer is the major cause of cancer death worldwide in women. Patients with metastasis have poor prognosis and the mechanisms of breast cancer metastasis are not completely understood. Long non-coding RNAs (lncRNAs) have been shown to have crucial roles in breast cancer development and progression. However, the underlying mechanisms by which lncRNA-driven breast cancer metastasis are unknown. The main objective of this paper is to explore a functional lncRNA and its mechanisms in breast cancer. Here we identified a novel lncRNA AC073352.1 that was significantly upregulated in breast cancer tissues and was associated with advanced TNM stages and poor prognosis in breast cancer patients. In addition, AC073352.1 was found to promote the migration and invasion of breast cancer cells in vitro and enhance breast cancer metastasis in vivo. Mechanistically, we elucidated that AC073352.1 interacted with YBX1 and stabilized its protein expression. Knock down of YBX1 reduced breast cancer cell migration and invasion and could partially reverse the stimulative effects of AC073352.1 overexpressed on breast cancer metastasis. Moreover, AC073352.1 might be packaged into exosomes by binding to YBX1 in breast cancer cells resulting in angiogenesis. Collectively, our results demonstrated that AC073352.1 promoted breast cancer metastasis and angiogenesis via binding YBX1, and it could serve as a promising, novel biomarker for prognosis and a therapeutic target in breast cancer.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Bin Sheng ◽  
Zichao Wei ◽  
Xiaowei Wu ◽  
Yi Li ◽  
Zhihua Liu

AbstractDeubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12–MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.


2019 ◽  
Author(s):  
Zhenhua Zhai ◽  
Ye Zhou ◽  
Xing Liu ◽  
Ying Wang ◽  
Yuyang Zhang ◽  
...  

Abstract Background Centromere proteins (CENPs) are primary components for chromosomal segregation in the mitotic stage. CENP-N is a member of CENPs, and is a key factor for recruitment of other CENPs and formation of a link between the centromere and micro-tubules, which facilitate cell division. Methods In order to clarify the role of CENP-N in breast cancer, RNA sequences data were downloaded from TCGA online database and the CENP-N expression was knocked down in breast cancer cells. Results The results show that the expression of CENP-N was higher in breast cancer comparing with the paracancerous tissues. In breast cancer, patients with high expression of CENP-N have a short-term overall survival compared with low expression of CENP-N. Both in vitro and in vivo, the growth of breast cancer cells was inhibited by down-regulation of CENP-N. In the gene-chip analysis, it reveals that down-regulation of CENP-N is primarily associated with functions of immune response and anti-tumor ef-fects. Of these changed canonical pathways, the activated interferon signaling was the most significant in CENP-N down-regulated breast cancer cells. In the western blot as-say, up-regulated expressions of molecules involved in interferon signaling were also confirmed. Conclusions Our results suggest that CENP-N can be a potential therapeutic target in the treatment of breast cancer, and the involved interferon signaling needs to be mainly fo-cused on. Keywords: CENP-N, Breast cancer, interferon signaling, Tumor growth


2021 ◽  
Vol 11 ◽  
Author(s):  
Chenlin Liu ◽  
Jun Han ◽  
Xiaoju Li ◽  
Tonglie Huang ◽  
Yuan Gao ◽  
...  

BackgroundFOXP3, as a tumour suppressor gene, has a vital function in inhibiting the metastasis of breast cancer cells, but the mechanisms by which it inhibits metastasis have not been fully elucidated. This study intended to explore a new mechanism by which FOXP3 inhibits breast cancer metastasis.MethodsBioinformatic analysis was performed to identify potential downstream molecules of FOXP3. The function of FOXP3 in inhibiting MTA1 expression at the mRNA and protein levels was verified by real-time PCR and Western blot analysis. The interaction between FOXP3 and the MTA1 promoter was verified by transcriptomic experiments. In vitro and in vivo experiments were used to determine whether the regulation of MTA1 by FOXP3 affected the invasion and migration of breast cancer cells. Immunohistochemistry was adopted to explore the correlation between the expression levels of FOXP3 and MTA1 in breast cancer samples.ResultsBioinformatics-based sequencing suggested that MTA1 is a potential downstream molecule of FOXP3. FOXP3 downregulated the expression of MTA1 in breast cancer cells by directly inhibiting MTA1 promoter activity. Importantly, FOXP3’s regulation of MTA1 affected the ability of breast cancer cells to invade and metastasize in vitro and in vivo. Moreover, analysis of clinical specimens showed a significant negative correlation between the expression levels of FOXP3 and MTA1 in breast cancer.ConclusionWe systematically explored a new mechanism by which FOXP3 inhibits breast cancer metastasis via the FOXP3-MTA1 pathway.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


2021 ◽  
Author(s):  
Duo You ◽  
Danfeng Du ◽  
Xueke Zhao ◽  
Xinmin Li ◽  
Minfeng Ying ◽  
...  

Abstract Background: α-ketoglutarate (α-KG) is the substrate to hydoxylate collagen and hypoxia-inducible factor-1α (HIF-1α), which are important for cancer metastasis. Previous studies showed that upregulation of collagen prolyl 4-hydroxylase in breast cancer cells stabilizes HIF-1α via depleting α-KG in breast cancer cells. We propose that mitochondrial malate enzyme 2 (ME2) may also affect HIF-1α via modulating α-KG level in breast cancer cells. Methods: ME2 protein expression was evaluated by immunohistochemistry on 100 breast cancer patients and correlated with clinicopathological indicators. The effect of ME2 knockout on cancer metastasis was evaluated by an orthotopic breast cancer model. The effect of ME2 knockout or knockdown on the levels of α-KG and HIF-1α protein in breast cancer cell lines (4T1 and MDA-MB-231) was determined in vitro and in vivo.Results: The high expression of ME2 was observed in the human breast cancerous tissues compared to the matched precancerous tissues (P=0.000). The breast cancer patients with a high expression of ME2 had an inferior survival than the patients with low expression of ME2 (P=0.019). ME2 high expression in breast cancer tissues was also related with lymph node metastasis (P=0.016), pathological staging (P=0.033) and vascular cancer embolus (P=0.014). In a 4T1 orthotopic breast cancer model, ME2 knockout significantly inhibited lung metastasis. In the tumors formed by ME2 knockout 4T1 cells, α-KG level significantly increased, collagen hydroxylation level did not change significantly, but HIF-1α protein level significantly decreased, in comparison to control. In cell culture, ME2 knockout or knockdown cells demonstrated a significantly higher α-KG level but significantly lower HIF-1α protein level than control cells under hypoxia. Exogenous malate and α-KG exerted similar effect on HIF-1α in breast cancer cells to ME2 knockout or knockdown. Treatment with malate significantly decreased 4T1 breast cancer lung metastasis. ME2 expression was associated with HIF-1α level in human breast cancer samples (P=0.027).Conclusion: We provide evidence that upregulation of ME2 is associated with a poor prognosis of breast cancer patients and propose a mechanistic understanding of a link between ME2 and breast cancer metastasis.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13002-e13002
Author(s):  
Yinghuan Cen ◽  
Chang Gong ◽  
Jun Li ◽  
Gehao Liang ◽  
Zihao Liu ◽  
...  

e13002 Background: We previously demonstrated that BRMS1L (breast cancer metastasis suppressor 1 like) suppresses breast cancer metastasis through HDAC1 recruitment and histone H3K9 deacetylation at the promoter of FZD10, a receptor for Wnt signaling. It is still unclear whether BRMS1L regulates organ-specific metastases, such as bone metastasis, the most prevalent metastatic site of breast cancer. Methods: Examination of the expression of BRMS1L in primary tumors, bone metastatic and other metastatic tissues from breast cancer patients was implemented using qRT-PCR and immunohistochemistry staining. To investigate the mechanism by which BRMS1L drives breast cancer bone metastasis, we tested the mRNA expression by qRT-PCR of a set of potential bone related genes (BRGs) based on PubMed database in MDA-MB-231 cells over expressing BRMS1L and MCF-7 cells knocking-down BRMS1L, and detected the expression of CXCR4 in these established cells by western blot. Transwell assays were performed to assess the migration abilities of breast cancer cells towards osteoblasts. ChIP (Chromatin Immuno-Precipitation) were employed to test the interaction between BRMS1L and CXCR4. Results: At both mRNA and protein levels, the expression of BRMS1L was significantly lower in bone metastatic sites than that in primary cancer tissues and other metastatic sites of breast cancer patients. CXCR4 was screened out in a set of BRGs and negatively correlated with the expression of BRMS1L in breast cancer cell lines. BRMS1L inhibited the migration of breast cancer cells towards osteoblasts through CXCL12/CXCR4 axis. In the presence of TSA treatment, breast cancer cell lines showed an increased expression of CXCR4 in a TSA concentration-dependent manner. In addition, ChIP assays verified that BRMS1L directly bound to the promoter region of CXCR4 and inhibited its transcription through promoter histone deacetylation. Conclusions: BRMS1L mediates the migration abilities of breast cancer cells to bone microenvironment via targeting CXCR4 and contributes to bone metastasis of breast cancer cells. Thus, BRMS1L may be a potential biomarker for predicting bone metastasis in breast cancer.


2014 ◽  
Vol 29 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Motoyoshi Endo ◽  
Yutaka Yamamoto ◽  
Masahiro Nakano ◽  
Tetsuro Masuda ◽  
Haruki Odagiri ◽  
...  

Introduction Breast cancer is a leading cause of cancer-related death in women worldwide, and its metastasis is a major cause of disease mortality. Therefore, identification of the mechanisms underlying breast cancer metastasis is crucial for the development of therapeutic and diagnostic strategies. Our recent study of immunodeficient female mice transplanted with MDA-MB231 breast cancer cells demonstrated that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) accelerates metastasis through both increasing tumor cell migration in an autocrine/paracrine manner, and enhancing tumor angiogenesis. To determine whether ANGPTL2 contributes to its clinical pathogenesis, we asked whether serum ANGPTL2 levels reflect the clinical features of breast cancer progression. Methods We monitored the levels of secreted ANGPTL2 in supernatants of cultured proliferating MDA-MB231 cells. We also determined whether the circulating ANGPTL2 levels were positively correlated with cancer progression in an in vivo breast cancer xenograft model using MDA-MB231 cells. Finally, we investigated whether serum ANGPTL2 levels were associated with clinical features in breast cancer patients. Results Both in vitro and in vivo experiments showed that the levels of ANGPTL2 secreted from breast cancer cells increased with cell proliferation and cancer progression. Serum ANGPTL2 levels in patients with metastatic breast cancer were significantly higher than those in healthy subjects or in patients with ductal carcinoma in situ or non-metastatic invasive ductal carcinoma. Serum ANGPTL2 levels in patients negative for estrogen receptors and progesterone receptors, particularly triple-negative cases, reflected histological grades. Conclusions These findings suggest that serum ANGPTL2 levels in breast cancer patients could represent a potential marker of breast cancer metastasis.


2019 ◽  
Vol 51 (8) ◽  
pp. 791-798 ◽  
Author(s):  
Lu Min ◽  
Chuanyang Liu ◽  
Jingyu Kuang ◽  
Xiaomin Wu ◽  
Lingyun Zhu

Abstract MicroRNAs (miRNAs) are a class of endogenous noncoding genes that regulate gene expression at the posttranscriptional level. In recent decades, miRNAs have been reported to play important roles in tumor growth and metastasis, while some reported functions of a specific miRNA in tumorigenesis are contradictory. In this study, we reevaluated the role of miR-214, which has been reported to serve as an oncogene or anti-oncogene in breast cancer metastasis. We found that miR-214 inhibited breast cancer via targeting RNF8, a newly identified regulator that could promote epithelial–mesenchymal transition (EMT). Specifically, the survival rate of breast cancer patients was positively correlated with miR-214 levels and negatively correlated with RNF8 expression. The overexpression of miR-214 inhibited cell proliferation and invasion of breast cancer, while suppression of miR-214 by chemically modified antagomir enhanced the proliferation and invasion of breast cancer cells. Furthermore, miR-214 could modulate the EMT process via downregulating RNF8. To our knowledge, this is the first report that reveals the role of the miR-214–RNF8 axis in EMT, and our results demonstrate a novel mechanism for miR-214 acting as a tumor suppressor through the regulation of EMT.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3345-3345
Author(s):  
Anargyros Xenocostas ◽  
Benjamin D Hedley ◽  
Jenny E Chu ◽  
D. George Ormond ◽  
Michel Beausoleil ◽  
...  

Abstract Abstract 3345 Background: Erythropoietin (EPO) is a key regulator of erythropoiesis, and has been shown to stimulate growth, maintain viability, and promote differentiation of red blood cell precursors. The EPO receptor (EPO-R) is expressed by erythroid cells and by several non-hematopoietic cell types including various neoplastic cells. Erythropoiesis-stimulating agents (ESAs) are used clinically for the treatment of chemotherapy-induced anemia. The results of some recent randomized clinical trials have reported an increased incidence in adverse events and reduced survival in ESA-treated metastatic breast cancer patients receiving chemotherapy, potentially related to EPO-induced cancer progression. These results have raised concerns over ESA treatment in metastatic cancer patients. However, very little pre-clinical data is available regarding the impact of EPO on breast cancer metastasis. The goal of the current study was therefore to determine if EPO can influence the malignant behavior of breast cancer cells and/or influence the metastatic process. Methods: MDA-MB-468, MDA-MB-231, MDA-MB-435, and 4T-1 breast cancer cell lines were treated with recombinant human EPO (rHuEPO; 10 U/ml) or control media and screened for EPO-R mRNA expression levels by RT-PCR, and for EPO-R protein expression by Western blot and flow cytometry. MDA-MB-231 (231) and MDA-MB-435 (435) cell lines were used for functional assays in vitro and in vivo. Untreated or rHuEPO treated cells were grown in 2D and 3D in vitro systems (standard tissue culture plates and 0.6% soft agar, respectively) to determine if rHuEPO influenced growth. In vitro cell survival was also assessed in response to treatment with rHuEPO in the presence or absence of paclitaxel chemotherapy (10mg/ml), radiation (10G), or hypoxic conditions (1% O2). Following mammary fat pad injection, in vivo effects of rHuEPO (300U/kg) alone or in combination with paclitaxel treatment (10mg/kg) were assessed in mouse models of tumorigenicity and spontaneous metastasis. Results: Expression analysis of EPO-R mRNA and protein revealed a large variation in levels across different cell lines. The majority of cell lines did not express cell surface EPO-R by flow cytometry, although two cell lines (231 and 435) did show weak expression of EPO-R mRNA, with only the 231 cell line showing EPO-R expression by Western blot. In vitro, a small protective effect from rHuEPO on radiation-treated 435 cells was seen (p<0.05); however, rHuEPO treatment alone or combined with chemotherapy or hypoxia did not cause a significant increase in cell survival relative to untreated controls cells. In contrast, in vivo studies demonstrated that rHuEPO increased the incidence and burden of lung metastases in immunocompromised mice injected with 231 or 435 cells and treated with paclitaxel relative to mice treated with paclitaxel alone (p<0.05). Conclusions: The lack of an in vitro effect of rHuEPO highlights the importance of in vivo studies to delineate the effects of EPO on the metastatic process. Our novel findings demonstrate that rHuEPO can reduce the efficacy of chemotherapy in the metastatic setting in vivo, and in some cases enhance the inherent metastatic growth potential of human breast cancer cells. This work was supported by funding from the London Regional Cancer Program and Janssen Ortho Canada Disclosures: Xenocostas: Janssen Ortho: Consultancy, Honoraria, Research Funding. Allan:Janssen Ortho: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document