Empirically identified networks of healthcare providers for adults with mental illness
Abstract Background Policies target networks of providers who treat people with mental illnesses, but little is known about the empirical structures of these networks and related variation in patient care. The goal of this paper is to describe networks of providers who treat adults with mental illness in a multi-payer database based medical claims data in a U.S. state. Methods Provider networks were identified and characterized using paid inpatient, outpatient and pharmacy claims related to care for people with a mental health diagnosis from an all-payer claims dataset that covers both public and private payers. Results Three nested levels of network structures were identified: an overall network, which included 21% of providers (N = 8256) and 97% of patients (N = 476,802), five communities and 24 sub-communities. Sub-communities were characterized by size, provider composition, continuity-of-care (CoC), and network structure measures including mean number of connections per provider (degree) and average number of connections who were connected to each other (transitivity). Sub-community size was positively associated with number of connections (r = .37) and the proportion of psychiatrists (r = .41) and uncorrelated with network transitivity (r = −.02) and continuity of care (r = .00). Network transitivity was not associated with CoC after adjustment for provider type, number of patients, and average connection CoC (p = .85). Conclusions These exploratory analyses suggest that network analysis can provide information about the networks of providers that treat people with mental illness that is not captured in traditional measures and may be useful in designing, implementing, and studying interventions to improve systems of care. Though initial results are promising, additional empirical work is needed to develop network-based measures and tools for policymakers.