network transitivity
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 7)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Joshua Breslau ◽  
Beth Dana ◽  
Harold Pincus ◽  
Marcela Horvitz-Lennon ◽  
Luke Matthews

Abstract Background Policies target networks of providers who treat people with mental illnesses, but little is known about the empirical structures of these networks and related variation in patient care. The goal of this paper is to describe networks of providers who treat adults with mental illness in a multi-payer database based medical claims data in a U.S. state. Methods Provider networks were identified and characterized using paid inpatient, outpatient and pharmacy claims related to care for people with a mental health diagnosis from an all-payer claims dataset that covers both public and private payers. Results Three nested levels of network structures were identified: an overall network, which included 21% of providers (N = 8256) and 97% of patients (N = 476,802), five communities and 24 sub-communities. Sub-communities were characterized by size, provider composition, continuity-of-care (CoC), and network structure measures including mean number of connections per provider (degree) and average number of connections who were connected to each other (transitivity). Sub-community size was positively associated with number of connections (r = .37) and the proportion of psychiatrists (r = .41) and uncorrelated with network transitivity (r = −.02) and continuity of care (r = .00). Network transitivity was not associated with CoC after adjustment for provider type, number of patients, and average connection CoC (p = .85). Conclusions These exploratory analyses suggest that network analysis can provide information about the networks of providers that treat people with mental illness that is not captured in traditional measures and may be useful in designing, implementing, and studying interventions to improve systems of care. Though initial results are promising, additional empirical work is needed to develop network-based measures and tools for policymakers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephany Rajeh ◽  
Marinette Savonnet ◽  
Eric Leclercq ◽  
Hocine Cherifi

AbstractIdentifying vital nodes in networks exhibiting a community structure is a fundamental issue. Indeed, community structure is one of the main properties of real-world networks. Recent works have shown that community-aware centrality measures compare favorably with classical measures agnostic about this ubiquitous property. Nonetheless, there is no clear consensus about how they relate and in which situation it is better to use a classical or a community-aware centrality measure. To this end, in this paper, we perform an extensive investigation to get a better understanding of the relationship between classical and community-aware centrality measures reported in the literature. Experiments use artificial networks with controlled community structure properties and a large sample of real-world networks originating from various domains. Results indicate that the stronger the community structure, the more appropriate the community-aware centrality measures. Furthermore, variations of the degree and community size distribution parameters do not affect the results. Finally, network transitivity and community structure strength are the most significant drivers controlling the interactions between classical and community-aware centrality measures.


2021 ◽  
Author(s):  
Joshua Breslau ◽  
Beth Dana ◽  
Harold Pincus ◽  
Marcela Horvitz-Lennon ◽  
Luke Matthews

Abstract Background Policies target networks of providers who treat people with mental illnesses, but little is known about the empirical structures of these networks and related variation in patient care. The goal of this paper is to describe networks of providers who treat adults with a mental illness in a multi-payer database based medical claims data in a U.S. state. Methods Provider networks were identified and characterized using paid inpatient, outpatient and pharmacy claims related to care for people with a mental health diagnosis from an all-payer claims dataset that covers both public and private payers. Results Three nested levels of network structures were identified, an overall network, which included 21% of providers (N = 8,256) and 97% of patients (N = 476,802), five communities and 24 sub-communities. Sub-communities were characterized by size, provider composition, continuity-of-care (CoC), and network structure measures including mean number of connections per provider (degree) and average number of connections who were connected to each other (transitivity). Sub-community size was positively associated with number of connections (r = .37) and the proportion of psychiatrists (r = .41) and uncorrelated with network transitivity (r=-.02) and continuity of care (r = .00). Network transitivity was not associated with CoC after adjustment for provider type, number of patients, and average connection CoC (p = .85). Conclusions These exploratory analyses suggest that network analysis can provide information about the networks of providers that treat people with mental illness that is not captured in traditional measures and may be useful in designing, implementing, and studying interventions to improve quality of care. Though initial results are promising, additional empirical work is needed to develop network-based measures and tools for policymakers.


2020 ◽  
Vol 27 (2) ◽  
pp. 261-275
Author(s):  
Jaqueline Lekscha ◽  
Reik V. Donner

Abstract. Analysing palaeoclimate proxy time series using windowed recurrence network analysis (wRNA) has been shown to provide valuable information on past climate variability. In turn, it has also been found that the robustness of the obtained results differs among proxies from different palaeoclimate archives. To systematically test the suitability of wRNA for studying different types of palaeoclimate proxy time series, we use the framework of forward proxy modelling. For this, we create artificial input time series with different properties and compare the areawise significant anomalies detected using wRNA of the input and the model output time series. Also, taking into account results for general filtering of different time series, we find that the variability of the network transitivity is altered for stochastic input time series while being rather robust for deterministic input. In terms of significant anomalies of the network transitivity, we observe that these anomalies may be missed by proxies from tree and lake archives after the non-linear filtering by the corresponding proxy system models. For proxies from speleothems, we additionally observe falsely identified significant anomalies that are not present in the input time series. Finally, for proxies from ice cores, the wRNA results show the best correspondence to those for the input data. Our results contribute to improve the interpretation of windowed recurrence network analysis results obtained from real-world palaeoclimate time series.


2020 ◽  
Author(s):  
Reik Donner ◽  
Jaqueline Lekscha

<p>Analysing palaeoclimate proxy time series using windowed recurrence network analysis (wRNA) has been shown to provide valuable information on past climate variability. In turn, it has also been found that the robustness of the obtained results differs among proxies from different palaeoclimate archives. To systematically test the suitability of wRNA for studying different types of palaeoclimate proxy time series, we use the framework of forward proxy modelling. For this, we create artificial input time series with different properties and compare the areawise significant anomalies detected using wRNA of the input and the model output time series. Also, taking into account results for general filtering of different time series, we find that the variability of the network transitivity is altered for stochastic input time series while being rather robust for deterministic input. In terms of significant anomalies of the network transitivity, we observe that these anomalies may be missed by proxies from tree and lake archives after the non-linear filtering by the corresponding proxy system models. For proxies from speleothems, we additionally observe falsely identified significant anomalies that are not present in the input time series. Finally, for proxies from ice cores, the wRNA results show the best correspondence with those for the input data. Our results contribute to improve the interpretation of windowed recurrence network analysis results obtained from real-world palaeoclimate time series.</p>


2019 ◽  
Vol 7 (3) ◽  
pp. 353-375
Author(s):  
David Dekker ◽  
David Krackhardt ◽  
Tom A. B. Snijders

AbstractThis paper proposes that common measures for network transitivity, based on the enumeration of transitive triples, do not reflect the theoretical statements about transitivity they aim to describe. These statements are often formulated as comparative conditional probabilities, but these are not directly reflected by simple functions of enumerations. We think that a better approach is obtained by considering the probability of a tie between two randomly drawn nodes, conditional on selected features of the network. Two measures of transitivity based on correlation coefficients between the existence of a tie and the existence, or the number, of two-paths between the nodes are developed, and called “Transitivity Phi” and “Transitivity Correlation.” Some desirable properties for these measures are studied and compared to existing clustering coefficients, in both random (Erdös–Renyi) and in stylized networks (windmills). Furthermore, it is shown that in a directed graph, under the condition of zero Transitivity Correlation, the total number of transitive triples is determined by four underlying features: size, density, reciprocity, and the covariance between in- and outdegrees. Also, it is demonstrated that plotting conditional probability of ties, given the number of two-paths, provides valuable insights into empirical regularities and irregularities of transitivity patterns.


2004 ◽  
Vol 69 (2) ◽  
Author(s):  
Z. Burda ◽  
J. Jurkiewicz ◽  
A. Krzywicki

Sign in / Sign up

Export Citation Format

Share Document