scholarly journals Screening and evaluation of the strong endogenous promoters in Pichia pastoris

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Weiwang Dou ◽  
Quanchao Zhu ◽  
Meihua Zhang ◽  
Zuyuan Jia ◽  
Wenjun Guan

Abstract Background Due to its ability to perform fast and high-density fermentation, Pichia pastoris is not only used as an excellent host for heterologous protein expression but also exhibits good potential for efficient biosynthesis of small-molecule compounds. However, basic research on P. pastoris lags far behind Saccharomyces cerevisiae, resulting in a lack of available biological elements. Especially, fewer strong endogenous promoter elements available for foreign protein expression or construction of biosynthetic pathways were carefully evaluated in P. pastoris. Thus, it will be necessary to identify more available endogenous promoters from P. pastoris. Results Based on RNA-seq and LacZ reporter system, eight strong endogenous promoters contributing to higher transcriptional expression levels and β-galactosidase activities in three frequently-used media were screened out. Among them, the transcriptional expression level contributed by P0019, P0107, P0230, P0392, or P0785 was basically unchanged during the logarithmic phase and stationary phase of growth. And the transcriptional level contributed by P0208 or P0627 exhibited a growth-dependent characteristic (a lower expression level during the logarithmic phase and a higher expression level during the stationary phase). After 60 h growth, the β-galactosidase activity contributed by P0208, P0627, P0019, P0407, P0392, P0230, P0785, or P0107 was relatively lower than PGAP but higher than PACT1. To evaluate the availability of these promoters, several of them were randomly applied to a heterogenous β-carotene biosynthetic pathway in P. pastoris, and the highest yield of β-carotene from these mutants was up to 1.07 mg/g. In addition, simultaneously using the same promoter multiple times could result in a notable competitive effect, which might significantly lower the transcriptional expression level of the target gene. Conclusions The novel strong endogenous promoter identified in this study adds to the number of promoter elements available in P. pastoris. And the competitive effect observed here suggests that a careful pre-evaluation is needed when simultaneously and multiply using the same promoter in one yeast strain. This work also provides an effective strategy to identify more novel biological elements for engineering applications in P. pastoris.

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Thunyarat Surasiang ◽  
Chalongrat Noree

Asparagine synthetase deficiency (ASD) has been found to be caused by certain mutations in the gene encoding human asparagine synthetase (ASNS). Among reported mutations, A6E mutation showed the greatest reduction in ASNS abundance. However, the effect of A6E mutation has not yet been tested with yeast asparagine synthetase (Asn1/2p). Here, we constructed a yeast strain by deleting ASN2 from its genome, introducing the A6E mutation codon to ASN1, along with GFP downstream of ASN1. Our mutant yeast construct showed a noticeable decrease of Asn1p(A6E)-GFP levels as compared to the control yeast expressing Asn1p(WT)-GFP. At the stationary phase, the A6E mutation also markedly lowered the assembly frequency of the enzyme. In contrast to Asn1p(WT)-GFP, Asn1p(A6E)-GFP was insensitive to changes in the intracellular energy levels upon treatment with sodium azide during the log phase or fresh glucose at the stationary phase. Our study has confirmed that the effect of A6E mutation on protein expression levels of asparagine synthetase is common in both unicellular and multicellular eukaryotes, suggesting that yeast could be a model of ASD. Furthermore, A6E mutation could be introduced to the ASNS gene of acute lymphoblastic leukemia patients to inhibit the upregulation of ASNS by cancer cells, reducing the risk of developing resistance to the asparaginase treatment.


Author(s):  
Selfela Restu Adina ◽  
Antonius Suwanto ◽  
Anja Meryandini ◽  
Esti Puspitasari

Abstract Background Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel.


Author(s):  
Wuping Yang ◽  
Kenan Zhang ◽  
Lei Li ◽  
Yawei Xu ◽  
Kaifang Ma ◽  
...  

Abstract Background Emerging evidence confirms that lncRNAs (long non-coding RNAs) are potential biomarkers that play vital roles in tumors. ZNF582-AS1 is a novel lncRNA that serves as a potential prognostic marker of cancers. However, the specific clinical significance and molecular mechanism of ZNF582-AS1 in ccRCC (clear cell renal cell carcinoma) are unclear. Methods Expression level and clinical significance of ZNF582-AS1 were determined by TCGA-KIRC data and qRT-PCR results of 62 ccRCCs. DNA methylation status of ZNF582-AS1 promoter was examined by MSP, MassARRAY methylation and demethylation analysis. Gain-of-function experiments were conducted to investigate the biological roles of ZNF582-AS1 in the phenotype of ccRCC. The subcellular localization of ZNF582-AS1 was detected by RNA FISH. iTRAQ, RNA pull-down and RIP-qRT-PCR were used to identify the downstream targets of ZNF582-AS1. rRNA MeRIP-seq and MeRIP-qRT-PCR were utilized to examine the N(6)-methyladenosine modification status. Western blot and immunohistochemistry assays were used to determine the protein expression level. Results ZNF582-AS1 was downregulated in ccRCC, and decreased ZNF582-AS1 expression was significantly correlated with advanced tumor stage, higher pathological stage, distant metastasis and poor prognosis. Decreased ZNF582-AS1 expression was caused by DNA methylation at the CpG islands within its promoter. ZNF582-AS1 overexpression inhibited cell proliferative, migratory and invasive ability, and increased cell apoptotic rate in vitro and in vivo. Mechanistically, we found that ZNF582-AS1 overexpression suppressed the N(6)-methyladenosine modification of MT-RNR1 by reducing rRNA adenine N(6)-methyltransferase A8K0B9 protein level, resulting in the decrease of MT-RNR1 expression, followed by the inhibition of MT-CO2 protein expression. Furthermore, MT-RNR1 overexpression reversed the decreased MT-CO2 expression and phenotype inhibition of ccRCC induced by increased ZNF582-AS1 expression. Conclusions This study demonstrates for the first time that ZNF582-AS1 functions as a tumor suppressor gene in ccRCC and ZNF582-AS1 may serve as a potential biomarker and therapeutic target of ccRCC.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 317-326
Author(s):  
Dongqiang Song ◽  
Beili Xu ◽  
Dongmin Shi ◽  
Shuyu Li ◽  
Yu Cai

AbstractPurposeS100A6 protein (calcyclin), a small calcium-binding protein of the S100 family, is often upregulated in various types of cancers, including hepatocellular carcinoma (HCC). The aim of this study was to illustrate the molecular mechanism of S100A6 in regulating the proliferation and migration of HCC cells.MethodsThe expressions of S100A6 in human HCC and adjacent non-tumor liver specimens were detected using immunoblotting and quantitative PCR (qPCR). The recombinant glutathione S-transferase (GST)-tagged human S100A6 protein was purified and identified. After treatment with S100A6, the proliferation of HepG2 cells was detected by the MTT and colony formation assay, and the migration of HepG2 cells was investigated by the transwell migration assay; the protein levels of cyclin D1 (CCND1), E-cadherin, and vimentin were also tested by immunoblotting. The effect of S100A6 on p21 and nuclear factor-κB pathway was verified by performing the dual luciferase assay. Then, the expression of p21 and its transcription activator, p53, was examined using immunoblotting and qPCR, the ubiquitination of which was investigated through co-immunoprecipitation.ResultsIt was found that the level of S100A6 was higher in the HCC tissues than in the adjacent non-tumor liver specimens. Exogenous overexpression of S100A6 promoted the proliferation and migration of HepG2 cells. S100A6 was observed to regulate p21 mRNA and protein expression levels and decrease p53 protein expression level, not mRNA level, by promoting the ubiquitination of p53 via the proteasome-dependent degradation pathway.ConclusionOur study indicated that S100A6 overexpression could promote the proliferation and migration of HCC cells by enhancing p53 ubiquitin-dependent proteasome degradation, ultimately regulating the p21 expression level.


2021 ◽  
Vol 20 ◽  
pp. 153303382199208
Author(s):  
Shufang Wang ◽  
Xinlong Huo

Background: Estrogen-related receptor alpha (ESRRA) was reported to play an important role in multiple biological processes of neoplastic diseases. The roles of ESRRA in endometrial cancer have not been fully investigated yet. Methods: Expression data and clinicopathological data of patients with uteri corpus endometrial carcinoma (UCEC) were obtained from The Cancer Genome Atlas (TCGA). Comprehensive bioinformatics analysis was performed, including receiver operating characteristics (ROC) curve analysis, Kaplan-Meier survival analysis, gene ontology (GO) enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Immunohistochemistry was used to detect the protein expression level of ESRRA and CCK-8 assay was performed to evaluate the effect of ESRRA on the proliferation ability. Results: A total of 552 UCEC tissues and 35 normal tissues were obtained from the TCGA database. The mRNA and protein expression level of ESRRA was highly elevated in UCEC compared with normal tissues, and was closely associated with poor prognosis. ROC analysis indicated a very high diagnostic value of ESRRA for patients with UCEC. GO and GSEA functional analysis showed that ESRRA might be mainly involved in cellular metabolism processes, in turn, tumorigenesis and progression of UCEC. Knockdown of ESRRA inhibited the proliferation of UCEC cells in vitro. Further immune cell infiltration demonstrated that ESRRA enhanced the infiltration level of neutrophil cell and reduced that of T cell (CD4+ naïve), NK cell, and cancer associated fibroblast (CAF). The alteration of immune microenvironment will greatly help in developing immune checkpoint therapy for UCEC. Conclusions: Our study comprehensively analyzed the expression level, clinical value, and possible mechanisms of action of ESRRA in UCEC. These findings showed that ESRRA might be a potential diagnostic and therapeutic target.


2020 ◽  
Vol 42 (12) ◽  
pp. 2685-2692 ◽  
Author(s):  
Xihao Liao ◽  
Wenyang Lin ◽  
Nanzhu Chen ◽  
Lu Li ◽  
Dafu Huang ◽  
...  

2011 ◽  
Vol 93 (6) ◽  
pp. 2483-2492 ◽  
Author(s):  
J. M. Araya-Garay ◽  
L. Feijoo-Siota ◽  
F. Rosa-dos-Santos ◽  
P. Veiga-Crespo ◽  
T. G. Villa
Keyword(s):  

2016 ◽  
Vol 116 (9) ◽  
pp. 1512-1518 ◽  
Author(s):  
Lin Lu ◽  
Bin Chang ◽  
Xiudong Liao ◽  
Runlian Wang ◽  
Liyang Zhang ◽  
...  

AbstractThe present study was carried out to evaluate dietary Mn requirements of broilers from 22 to 42 d of age using molecular biomarkers. Chickens were fed a conventional basal maize–soyabean meal diet supplemented with Mn as Mn sulphate in graded concentrations of 20 mg Mn/kg from 0 to 140 mg Mn/kg of diet for 21 d (from 22 to 42 d of age). The Mn response curves were fitted for ten parameters including heart Mn-containing superoxide dismutase (MnSOD) mRNA and its protein expression levels and the DNA-binding activities of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Heart MnSOD mRNA and protein expression levels showed significant quadratic responses (P<0·01), and heart MnSOD activity showed a broken-line response (P<0·01), whereas Mn content and DNA-binding activities of Sp1 and AP-2 in the heart displayed linear responses (P<0·01) to dietary Mn concentrations, respectively. The estimates of dietary Mn requirements were 101, 104 and 94 mg/kg for full expressions of MnSOD mRNA level, MnSOD protein level and MnSOD activity in the heart, respectively. Our findings indicate that heart MnSOD mRNA expression level is a more reliable indicator than heart MnSOD protein expression level and its activity for the evaluation of Mn requirement of broilers, and about 100 mg Mn/kg of diet is required for the full expression of heart MnSOD in broilers fed the conventional basal maize–soyabean meal diet from 22 to 42 d of age.


2003 ◽  
Vol 185 (20) ◽  
pp. 6005-6015 ◽  
Author(s):  
Krishna K. Gopaul ◽  
Patricia C. Brooks ◽  
Jean-François Prost ◽  
Elaine O. Davis

ABSTRACT The recA gene of Mycobacterium tuberculosis is unusual in that it is expressed from two promoters, one of which, P1, is DNA damage inducible independently of LexA and RecA, while the other, P2, is regulated by LexA in the classical way (E. O. Davis, B. Springer, K. K. Gopaul, K. G. Papavinasasundaram, P. Sander, and E. C. Böttger, Mol. Microbiol. 46:791-800, 2002). In this study we characterized these two promoters in more detail. Firstly, we localized the promoter elements for each of the promoters, and in so doing we identified a mutation in each promoter which eliminates promoter activity. Interestingly, a motif with similarity to Escherichia coli σ70 −35 elements but located much closer to the −10 element is important for optimal expression of P1, whereas the sequence at the −35 location is not. Secondly, we found that the sequences flanking the promoters can have a profound effect on the expression level directed by each of the promoters. Finally, we examined the contribution of each of the promoters to recA expression and compared their kinetics of induction following DNA damage.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246752
Author(s):  
Maryam Asadi ◽  
Nahid Ahmadi ◽  
Simin Ahmadvand ◽  
Ali Akbar Jafari ◽  
Akbar Safaei ◽  
...  

Among cancer treatment methods, targeted therapy using cancer-associated biomarkers has minimum side effects. Recently olfactory receptor (OR) family attracts the researcher’s attention as a favorable biomarker of cancer. Here, a statistical approach using complete data from the human protein atlas database was used to evaluate the potential of OR51J1 gene as a cancer-associated biomarker. To confirm the findings of statistical analysis, the OR51J1 mRNA and protein expression levels in breast tumor and normal tissue were measured using quantitative Real Time PCR (qRT-PCR) and immunohistochemistry (IHC) techniques. The association with clinicopathological factors was analyzed. Statistical analysis revealed that OR51J1 has a high expression level in more than 20 types of cancer tissues without any expression in 44 normal tissues. In 15 cancer types, including breast cancer, expression score was more than 90%. The qRT-PCR analysis in breast cancer showed OR51J1 have significantly higher expression level in tumors than normal tissues (2.91 fold). The IHC results showed OR51J1 expression on other cellular subtypes than tumor and normal cells, including myoepithelium, fibroblast, and lymphocytes. OR51J1 protein expression in invasive cells, as well as its overall score, showed a significant correlation with ER and PR expression and breast cancer (BC) subtypes. Results revealed the potential of OR51J1 as a cancer-associated biomarker for the diagnosis of breast cancer at the mRNA level.


Sign in / Sign up

Export Citation Format

Share Document