scholarly journals Machine-learning-based children’s pathological gait classification with low-cost gait-recognition system

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Linghui Xu ◽  
Jiansong Chen ◽  
Fei Wang ◽  
Yuting Chen ◽  
Wei Yang ◽  
...  

Abstract Background Pathological gaits of children may lead to terrible diseases, such as osteoarthritis or scoliosis. By monitoring the gait pattern of a child, proper therapeutic measures can be recommended to avoid the terrible consequence. However, low-cost systems for pathological gait recognition of children automatically have not been on market yet. Our goal was to design a low-cost gait-recognition system for children with only pressure information. Methods In this study, we design a pathological gait-recognition system (PGRS) with an 8 × 8 pressure-sensor array. An intelligent gait-recognition method (IGRM) based on machine learning and pure plantar pressure information is also proposed in static and dynamic sections to realize high accuracy and good real-time performance. To verifying the recognition effect, a total of 17 children were recruited in the experiments wearing PGRS to recognize three pathological gaits (toe-in, toe-out, and flat) and normal gait. Children are asked to walk naturally on level ground in the dynamic section or stand naturally and comfortably in the static section. The evaluation of the performance of recognition results included stratified tenfold cross-validation with recall, precision, and a time cost as metrics. Results The experimental results show that all of the IGRMs have been identified with a practically applicable degree of average accuracy either in the dynamic or static section. Experimental results indicate that the IGRM has 92.41% and 97.79% intra-subject recognition accuracy, and 85.78% and 78.81% inter-subject recognition accuracy, respectively, in the static and dynamic sections. And we find methods in the static section have less recognition accuracy due to the unnatural gesture of children when standing. Conclusions In this study, a low-cost PGRS has been verified and realize feasibility, highly average precision, and good real-time performance of gait recognition. The experimental results reveal the potential for the computer supervision of non-pathological and pathological gaits in the plantar-pressure patterns of children and for providing feedback in the application of gait-abnormality rectification.

2021 ◽  
Author(s):  
Linghui Xu ◽  
Jiansong Chen ◽  
Fei Wang ◽  
Yuting Chen ◽  
Wei Yang ◽  
...  

Abstract Background: Pathological gaits of children may lead to terrible diseases, such as osteoarthritis or scoliosis. By monitoring the gait pattern of a child, proper therapeutic measures can be recommended to avoid the terrible consequence. However, low-cost systems for pathological gait recognition of children automatically have not been on market yet. Our goal was to design a low-cost gait-recognition system for children with only pressure information.Methods: In this study, we design a pathological gait-recognition system (PGRS) with an 8 × 8 pressure-sensor array. An intelligent gait-recognition method (IGRM) based on machine learning and pure plantar pressure information is also proposed in static and dynamic sections to realize high accuracy and good real-time performance. To verifying the recognition effect, a total of seventeen children were recruited in the experiments wearing PGRS to recognize three pathological gaits (toe in, toe out, and flat) and normal gait. Children are asked to walk naturally on level ground in the dynamic section or stand naturally and comfortably in the static section. The evaluation of the performance of recognition results included stratified 10-fold cross-validation with recall, precision, and a time cost as metrics.Results: The experimental results show that all of the IGRMs have been identified with a practically applicable degree of average accuracy either in the dynamic or static section. Experimental results indicate that the IGRM has 92.41% and 97.79% recognition accuracy respectively in the static and dynamic sections. And we find methods in the static section have less recognition accuracy due to the unnatural gesture of children when standing.Conclusions: In this study, a low-cost PGRS has been verified and realize feasibility, highly average precision, and good real-time performance of gait recognition. The experimental results reveal the potential for the computer supervision of non-pathological and pathological gaits in the plantar-pressure patterns of children and for providing feedback in the application of gait-abnormality rectification.


2021 ◽  
Vol 11 (11) ◽  
pp. 4940
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

The field of research related to video data has difficulty in extracting not only spatial but also temporal features and human action recognition (HAR) is a representative field of research that applies convolutional neural network (CNN) to video data. The performance for action recognition has improved, but owing to the complexity of the model, some still limitations to operation in real-time persist. Therefore, a lightweight CNN-based single-stream HAR model that can operate in real-time is proposed. The proposed model extracts spatial feature maps by applying CNN to the images that develop the video and uses the frame change rate of sequential images as time information. Spatial feature maps are weighted-averaged by frame change, transformed into spatiotemporal features, and input into multilayer perceptrons, which have a relatively lower complexity than other HAR models; thus, our method has high utility in a single embedded system connected to CCTV. The results of evaluating action recognition accuracy and data processing speed through challenging action recognition benchmark UCF-101 showed higher action recognition accuracy than the HAR model using long short-term memory with a small amount of video frames and confirmed the real-time operational possibility through fast data processing speed. In addition, the performance of the proposed weighted mean-based HAR model was verified by testing it in Jetson NANO to confirm the possibility of using it in low-cost GPU-based embedded systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fang Wang ◽  
Jichuan Xing ◽  
Jinxin Li ◽  
Feng Zhao ◽  
Shufeng Zhang

With the development of technology, the total extent of global pipeline transportation is also increased. However, the traditional long-distance optical fiber prewarning system has poor real-time performance and high false alarm rate when recognizing events threatening pipeline safety. The same vibration signal would vary greatly when collected in different soil environments and this problem would reduce the signal recognition accuracy of the prewarning system. In this paper, we studied this effect theoretically and analyzed soil vibration signals under different soil conditions. Then we studied the signal acquisition problem of long-distance gas and oil pipeline prewarning system in real soil environment. Ultimately, an improved high-intelligence method was proposed for optimization. This method is based on the real application environment, which is more suitable for the recognition of optical fiber vibration signals. Through experiments, the method yielded high recognition accuracy of above 95%. The results indicate that the method can significantly improve signal acquisition and recognition and has good adaptability and real-time performance in the real soil environment.


2021 ◽  
Author(s):  
Nicholas Parkyn

Emerging heterogeneous computing, computing at the edge, machine learning and AI at the edge technology drives approaches and techniques for processing and analysing onboard instrument data in near real-time. The author has used edge computing and neural networks combined with high performance heterogeneous computing platforms to accelerate AI workloads. Heterogeneous computing hardware used is readily available, low cost, delivers impressive AI performance and can run multiple neural networks in parallel. Collecting, processing and machine learning from onboard instruments data in near real-time is not a trivial problem due to data volumes, complexities of data filtering, data storage and continual learning. Little research has been done on continual machine learning which aims at a higher level of machine intelligence through providing the artificial agents with the ability to learn from a non-stationary and never-ending stream of data. The author has applied the concept of continual learning to building a system that continually learns from actual boat performance and refines predictions previously done using static VPP data. The neural networks used are initially trained using the output from traditional VPP software and continue to learn from actual data collected under real sailing conditions. The author will present the system design, AI, and edge computing techniques used and the approaches he has researched for incremental training to realise continual learning.


Author(s):  
Marina L. Gavrilova ◽  
Ferdous Ahmed ◽  
A. S. M. Hossain Bari ◽  
Ruixuan Liu ◽  
Tiantian Liu ◽  
...  

This chapter outlines the current state of the art of Kinect sensor gait and activity authentication. It also focuses on emotional cues that could be observed from human body and posture. It presents a prototype of a system that combines recently developed behavioral gait and posture recognition methods for human emotion identification. A backbone of the system is Kinect sensor gait recognition, which explores the relationship between joint-relative angles and joint-relative distances through machine learning. The chapter then introduces a real-time gesture recognition system developed using Kinect sensor and trained with SVM classifier. Preliminary experimental results demonstrate accuracy and feasibility of using such systems in real-world scenarios. While gait and emotion from body movement has been researched in the context of standalone biometric security systems, they were never previously explored for physiotherapy rehabilitation and real-time patient feedback. The survey of recent progress and open problems in crucial areas of medical patient rehabilitation and rescue operations conclude this chapter.


Author(s):  
Marina L. Gavrilova ◽  
Ferdous Ahmed ◽  
A. S. M. Hossain Bari ◽  
Ruixuan Liu ◽  
Tiantian Liu ◽  
...  

This chapter outlines the current state of the art of Kinect sensor gait and activity authentication. It also focuses on emotional cues that could be observed from human body and posture. It presents a prototype of a system that combines recently developed behavioral gait and posture recognition methods for human emotion identification. A backbone of the system is Kinect sensor gait recognition, which explores the relationship between joint-relative angles and joint-relative distances through machine learning. The chapter then introduces a real-time gesture recognition system developed using Kinect sensor and trained with SVM classifier. Preliminary experimental results demonstrate accuracy and feasibility of using such systems in real-world scenarios. While gait and emotion from body movement has been researched in the context of standalone biometric security systems, they were never previously explored for physiotherapy rehabilitation and real-time patient feedback. The survey of recent progress and open problems in crucial areas of medical patient rehabilitation and rescue operations conclude this chapter.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zuopeng Zhao ◽  
Zhongxin Zhang ◽  
Xinzheng Xu ◽  
Yi Xu ◽  
Hualin Yan ◽  
...  

It is necessary to improve the performance of the object detection algorithm in resource-constrained embedded devices by lightweight improvement. In order to further improve the recognition accuracy of the algorithm for small target objects, this paper integrates 5 × 5 deep detachable convolution kernel on the basis of MobileNetV2-SSDLite model, extracts features of two special convolutional layers in addition to detecting the target, and designs a new lightweight object detection network—Lightweight Microscopic Detection Network (LMS-DN). The network can be implemented on embedded devices such as NVIDIA Jetson TX2. The experimental results show that LMS-DN only needs fewer parameters and calculation costs to obtain higher identification accuracy and stronger anti-interference than other popular object detection models.


Author(s):  
Zhe Xiao ◽  
Xin Chen ◽  
Li Zhou ◽  
◽  
◽  
...  

Traditional optical music recognition (OMR) is an important technology that automatically recognizes scanned paper music sheets. In this study, traditional OMR is combined with robotics, and a real-time OMR system for a dulcimer musical robot is proposed. This system gives the musical robot a stronger ability to perceive and understand music. The proposed OMR system can read music scores, and the recognized information is converted into a standard electronic music file for the dulcimer musical robot, thus achieving real-time performance. During the recognition steps, we treat note groups and isolated notes separately. Specially structured note groups are identified by primitive decomposition and structural analysis. The note groups are decomposed into three fundamental elements: note stem, note head, and note beams. Isolated music symbols are recognized based on shape model descriptors. We conduct tests on real pictures taken live by a camera. The tests show that the proposed method has a higher recognition rate.


Sign in / Sign up

Export Citation Format

Share Document