feature maps
Recently Published Documents


TOTAL DOCUMENTS

1249
(FIVE YEARS 677)

H-INDEX

41
(FIVE YEARS 11)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Xiang Yu ◽  
Shui-Hua Wang ◽  
Juan Manuel Górriz ◽  
Xian-Wei Jiang ◽  
David S. Guttery ◽  
...  

As an important imaging modality, mammography is considered to be the global gold standard for early detection of breast cancer. Computer-Aided (CAD) systems have played a crucial role in facilitating quicker diagnostic procedures, which otherwise could take weeks if only radiologists were involved. In some of these CAD systems, breast pectoral segmentation is required for breast region partition from breast pectoral muscle for specific analysis tasks. Therefore, accurate and efficient breast pectoral muscle segmentation frameworks are in high demand. Here, we proposed a novel deep learning framework, which we code-named PeMNet, for breast pectoral muscle segmentation in mammography images. In the proposed PeMNet, we integrated a novel attention module called the Global Channel Attention Module (GCAM), which can effectively improve the segmentation performance of Deeplabv3+ using minimal parameter overheads. In GCAM, channel attention maps (CAMs) are first extracted by concatenating feature maps after paralleled global average pooling and global maximum pooling operation. CAMs are then refined and scaled up by multi-layer perceptron (MLP) for elementwise multiplication with CAMs in next feature level. By iteratively repeating this procedure, the global CAMs (GCAMs) are then formed and multiplied elementwise with final feature maps to lead to final segmentation. By doing so, CAMs in early stages of a deep convolution network can be effectively passed on to later stages of the network and therefore leads to better information usage. The experiments on a merged dataset derived from two datasets, INbreast and OPTIMAM, showed that PeMNet greatly outperformed state-of-the-art methods by achieving an IoU of 97.46%, global pixel accuracy of 99.48%, Dice similarity coefficient of 96.30%, and Jaccard of 93.33%, respectively.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hongyu Wang ◽  
Hong Gu ◽  
Pan Qin ◽  
Jia Wang

Deep learning has achieved considerable success in medical image segmentation. However, applying deep learning in clinical environments often involves two problems: (1) scarcity of annotated data as data annotation is time-consuming and (2) varying attributes of different datasets due to domain shift. To address these problems, we propose an improved generative adversarial network (GAN) segmentation model, called U-shaped GAN, for limited-annotated chest radiograph datasets. The semi-supervised learning approach and unsupervised domain adaptation (UDA) approach are modeled into a unified framework for effective segmentation. We improve GAN by replacing the traditional discriminator with a U-shaped net, which predicts each pixel a label. The proposed U-shaped net is designed with high resolution radiographs (1,024 × 1,024) for effective segmentation while taking computational burden into account. The pointwise convolution is applied to U-shaped GAN for dimensionality reduction, which decreases the number of feature maps while retaining their salient features. Moreover, we design the U-shaped net with a pretrained ResNet-50 as an encoder to reduce the computational burden of training the encoder from scratch. A semi-supervised learning approach is proposed learning from limited annotated data while exploiting additional unannotated data with a pixel-level loss. U-shaped GAN is extended to UDA by taking the source and target domain data as the annotated data and the unannotated data in the semi-supervised learning approach, respectively. Compared to the previous models dealing with the aforementioned problems separately, U-shaped GAN is compatible with varying data distributions of multiple medical centers, with efficient training and optimizing performance. U-shaped GAN can be generalized to chest radiograph segmentation for clinical deployment. We evaluate U-shaped GAN with two chest radiograph datasets. U-shaped GAN is shown to significantly outperform the state-of-the-art models.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 118
Author(s):  
Yu Sun ◽  
Rongrong Ni ◽  
Yao Zhao

Up to now, most of the forensics methods have attached more attention to natural content images. To expand the application of image forensics technology, forgery detection for certificate images that can directly represent people’s rights and interests is investigated in this paper. Variable tampered region scales and diverse manipulation types are two typical characteristics in fake certificate images. To tackle this task, a novel method called Multi-level Feature Attention Network (MFAN) is proposed. MFAN is built following the encoder–decoder network structure. In order to extract features with rich scale information in the encoder, on the one hand, we employ Atrous Spatial Pyramid Pooling (ASPP) on the final layer of a pre-trained residual network to capture the contextual information at different scales; on the other hand, low-level features are concatenated to ensure the sensibility to small targets. Furthermore, the resulting multi-level features are recalibrated on channels for irrelevant information suppression and enhancing the tampered regions, guiding the MFAN to adapt to diverse manipulation traces. In the decoder module, the attentive feature maps are convoluted and unsampled to effectively generate the prediction mask. Experimental results indicate that the proposed method outperforms some state-of-the-art forensics methods.


Author(s):  
Meijian Ren ◽  
Rulin Shen ◽  
Yanling Gong

Abstract Surface defect detection is very important to ensure product quality, but most of the surface defects of industrial products are characterized by low contrast, big size difference and category similarity, which brings challenges to the automatic detection of defects. To solve these problems, we propose a defect detection method based on convolutional neural network. In this method, a backbone network with semantic supervision is applied to extract the features of different levels. While a multi-level feature fusion module is proposed to fuse adjacent feature maps into high-resolution feature maps successively, which significantly improves the prediction accuracy of the network. Finally, an Encoding module is used to obtain the global context information of the high-resolution feature map, which further improves the pixel classification accuracy. Experiments show that the proposed method is superior to other methods in NEU_SEG (mIoU of 85.27) and MT (mIoU of 77.82) datasets, and has the potential of real-time detection.


2022 ◽  
Author(s):  
Claudio Filipi Gonçalves dos Santos ◽  
João Paulo Papa

Several image processing tasks, such as image classification and object detection, have been significantly improved using Convolutional Neural Networks (CNN). Like ResNet and EfficientNet, many architectures have achieved outstanding results in at least one dataset by the time of their creation. A critical factor in training concerns the network’s regularization, which prevents the structure from overfitting. This work analyzes several regularization methods developed in the last few years, showing significant improvements for different CNN models. The works are classified into three main areas: the first one is called “data augmentation”, where all the techniques focus on performing changes in the input data. The second, named “internal changes”, which aims to describe procedures to modify the feature maps generated by the neural network or the kernels. The last one, called “label”, concerns transforming the labels of a given input. This work presents two main differences comparing to other available surveys about regularization: (i) the first concerns the papers gathered in the manuscript, which are not older than five years, and (ii) the second distinction is about reproducibility, i.e., all works refered here have their code available in public repositories or they have been directly implemented in some framework, such as TensorFlow or Torch.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 102
Author(s):  
Michele Lo Giudice ◽  
Giuseppe Varone ◽  
Cosimo Ieracitano ◽  
Nadia Mammone ◽  
Giovanbattista Gaspare Tripodi ◽  
...  

The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses.


Author(s):  
Cuili Mao ◽  
Wen Ma

The wide application of intelligent manufacturing technologies imposes higher requirements for the quality inspection of industrial products; however, the existing industrial product quality inspection methods generally have a few shortcomings such as requiring many inspectors, too complicated methods, difficulty in realizing standardized monitoring, and the low inspection efficiency, etc. Targeting at these problems, this paper proposed an automatic detection and online quality inspection method for workpiece surface cracks based on the machine vision technology. At first, it proposed a vision-field environment calibration method, gave the specific method for workpiece shape feature recognition and size measurement based on machine vision, and achieved the on-line monitoring of workpiece quality problems such as feature defects and size deviations. Then, this study integrated the multi-scale attention module and the up-sampling module that can restore the locations of image pixels based on the high-level and low-level hybrid feature maps, built a workpiece crack extraction network, and realized workpiece crack feature extraction, crack type classification, and damage degree division. At last, experimental results verified the effectiveness of the proposed method, and this paper provided a reference for the application of machine vision technology in other fields.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Tulika Kakati ◽  
Dhruba K. Bhattacharyya ◽  
Jugal K. Kalita ◽  
Trina M. Norden-Krichmar

Abstract Background A limitation of traditional differential expression analysis on small datasets involves the possibility of false positives and false negatives due to sample variation. Considering the recent advances in deep learning (DL) based models, we wanted to expand the state-of-the-art in disease biomarker prediction from RNA-seq data using DL. However, application of DL to RNA-seq data is challenging due to absence of appropriate labels and smaller sample size as compared to number of genes. Deep learning coupled with transfer learning can improve prediction performance on novel data by incorporating patterns learned from other related data. With the emergence of new disease datasets, biomarker prediction would be facilitated by having a generalized model that can transfer the knowledge of trained feature maps to the new dataset. To the best of our knowledge, there is no Convolutional Neural Network (CNN)-based model coupled with transfer learning to predict the significant upregulating (UR) and downregulating (DR) genes from both trained and untrained datasets. Results We implemented a CNN model, DEGnext, to predict UR and DR genes from gene expression data obtained from The Cancer Genome Atlas database. DEGnext uses biologically validated data along with logarithmic fold change values to classify differentially expressed genes (DEGs) as UR and DR genes. We applied transfer learning to our model to leverage the knowledge of trained feature maps to untrained cancer datasets. DEGnext’s results were competitive (ROC scores between 88 and 99$$\%$$ % ) with those of five traditional machine learning methods: Decision Tree, K-Nearest Neighbors, Random Forest, Support Vector Machine, and XGBoost. DEGnext was robust and effective in terms of transferring learned feature maps to facilitate classification of unseen datasets. Additionally, we validated that the predicted DEGs from DEGnext were mapped to significant Gene Ontology terms and pathways related to cancer. Conclusions DEGnext can classify DEGs into UR and DR genes from RNA-seq cancer datasets with high performance. This type of analysis, using biologically relevant fine-tuning data, may aid in the exploration of potential biomarkers and can be adapted for other disease datasets.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 382
Author(s):  
Naoki Ogawa ◽  
Keisuke Maeda ◽  
Takahiro Ogawa ◽  
Miki Haseyama

This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Zhifeng Ding ◽  
Zichen Gu ◽  
Yanpeng Sun ◽  
Xinguang Xiang

The detection method based on anchor-free not only reduces the training cost of object detection, but also avoids the imbalance problem caused by an excessive number of anchors. However, these methods only pay attention to the impact of the detection head on the detection performance, thus ignoring the impact of feature fusion on the detection performance. In this article, we take pedestrian detection as an example and propose a one-stage network Cascaded Cross-layer Fusion Network (CCFNet) based on anchor-free. It consists of Cascaded Cross-layer Fusion module (CCF) and novel detection head. Among them, CCF fully considers the distribution of high-level information and low-level information of feature maps under different stages in the network. First, the deep network is used to remove a large amount of noise in the shallow features, and finally, the high-level features are reused to obtain a more complete feature representation. Secondly, for the pedestrian detection task, a novel detection head is designed, which uses the global smooth map (GSMap) to provide global information for the center map to obtain a more accurate center map. Finally, we verified the feasibility of CCFNet on the Caltech and CityPersons datasets.


Sign in / Sign up

Export Citation Format

Share Document