scholarly journals Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lite Ge ◽  
Chengfeng Xun ◽  
Wenshui Li ◽  
Shengyu Jin ◽  
Zuo Liu ◽  
...  

AbstractMesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration, such as the induction of angiogenesis, particularly under hypoxic conditions. However, the molecular mechanisms underlying hypoxic MSC activation remain largely unknown. MSC-derived extracellular vesicles (EVs) are vital mediators of cell-to-cell communication and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of EVs from human hypoxic olfactory mucosa MSCs (OM-MSCs) on angiogenesis and its underlying mechanism. EVs were isolated from normoxic (N) OM-MSCs (N-EVs) and hypoxic (H) OM-MSCs (H-EVs) using differential centrifugation and identified by transmission electron microscopy and flow cytometry. In vitro and in vivo, both types of OM-MSC-EVs promoted the proliferation, migration, and angiogenic activities of human brain microvascular endothelial cells (HBMECs). In addition, angiogenesis-stimulatory activity in the H-EV group was significantly enhanced compared to the N-EV group. MicroRNA profiling revealed a higher abundance of miR-612 in H-EVs than in N-EVs, while miR-612 inactivation abolished the N-EV treatment benefit. To explore the roles of miR-612, overexpression and knock-down experiments were performed using a mimic and inhibitor or agomir and antagomir of miR-612. The miR-612 target genes were confirmed using the luciferase reporter assay. Gain- and loss-of-function studies allowed the validation of miR-612 (enriched in hypoxic OM-MSC-EVs) as a functional messenger that stimulates angiogenesis and represses the expression of TP53 by targeting its 3′-untranslated region. Further functional assays showed that hypoxic OM-MSC-EVs promote paracrine Hypoxia-inducible factor 1-alpha (HIF-1α)-Vascular endothelial growth factor (VEGF) signaling in HBMECs via the exosomal miR-612-TP53-HIF-1α-VEGF axis. These findings suggest that hypoxic OM-MSC-EVs may represent a promising strategy for ischemic disease by promoting angiogenesis via miR-612 transfer. Graphical Abstract

2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


2017 ◽  
Vol 53 (02) ◽  
pp. 104-120 ◽  
Author(s):  
Manisha Singh ◽  
Suchi Gupta ◽  
Sonali Rawat ◽  
Swati Midha ◽  
Krishan Gopal Jain ◽  
...  

ABSTRACTCell replacement therapy holds a promising future in the treatment of degenerative diseases related to neuronal, cardiac and bone tissues. In such kind of diseases, there is a progressive loss of specific types of cells. Currently the most upcoming and trusted cell candidate is Mesenchymal Stem Cells (MSCs) as these cells are easy to isolate from the tissue, easy to maintain and expand and no ethical concerns are linked. MSCs can be obtained from a number of sources like bone marrow, umbilical cord blood, umbilical cord, dental pulp, adipose tissues, etc. MSCs help in tissue repair and regeneration by various mechanisms of action like cell differentiation, immunomodulation, paracrine effect, etc. The future of regenerative medicine lies in tissue engineering and exploiting various properties to yield maximum output. In the current review article, we have targeted the repair and regeneration mechanisms of MSCs in neurodegenerative diseases, cardiac diseases and those related to bones. Yet there is a lot to understand, discover and then understand again about the molecular mechanisms of MSCs and then applying this knowledge in developing the therapy to get maximum repair and regeneration of concerned tissue and in turn the recovery of the patient.


2019 ◽  
Vol 20 (16) ◽  
pp. 3876 ◽  
Author(s):  
Zanoni ◽  
Cortesi ◽  
Zamagni ◽  
Tesei

Radiation therapy is one of the most important treatment modalities for thoracic tumors. Despite significant advances in radiation techniques, radiation-induced lung injury (RILI) still occurs in up to 30% of patients undergoing thoracic radiotherapy, and therefore remains the main dose-limiting obstacle. RILI is a potentially lethal clinical complication of radiotherapy that has 2 main stages: an acute stage defined as radiation pneumonitis, and a late stage defined as radiation-induced lung fibrosis. Patients who develop lung fibrosis have a reduced quality of life with progressive and irreversible organ malfunction. Currently, the most effective intervention for the treatment of lung fibrosis is lung transplantation, but the lack of available lungs and transplantation-related complications severely limits the success of this procedure. Over the last few decades, advances have been reported in the use of mesenchymal stem cells (MSCs) for lung tissue repair and regeneration. MSCs not only replace damaged lung epithelial cells but also promote tissue repair through the secretion of anti-inflammatory and anti-fibrotic factors. Here, we present an overview of MSC-based therapy for radiation-induced lung fibrosis, focusing in particular on the molecular mechanisms involved and describing the most recent preclinical and clinical studies carried out in the field.


2020 ◽  
Vol 21 (5) ◽  
pp. 1638 ◽  
Author(s):  
Emilia Di Giovanni ◽  
Silvia Buonvino ◽  
Ivano Amelio ◽  
Sonia Melino

The endogenous gasotransmitter H2S plays an important role in the central nervous, respiratory and cardiovascular systems. Accordingly, slow-releasing H2S donors are powerful tools for basic studies and innovative pharmaco-therapeutic agents for cardiovascular and neurodegenerative diseases. Nonetheless, the effects of H2S-releasing agents on the growth of stem cells have not been fully investigated. H2S preconditioning can enhance mesenchymal stem cell survival after post-ischaemic myocardial implantation; therefore, stem cell therapy combined with H2S may be relevant in cell-based therapy for regenerative medicine. Here, we studied the effects of slow-releasing H2S agents on the cell growth and differentiation of cardiac Lin− Sca1+ human mesenchymal stem cells (cMSC) and on normal human dermal fibroblasts (NHDF). In particular, we investigated the effects of water-soluble GSH–garlic conjugates (GSGa) on cMSC compared to other H2S-releasing agents, such as Na2S and GYY4137. GSGa treatment of cMSC and NHDF increased their cell proliferation and migration in a concentration dependent manner with respect to the control. GSGa treatment promoted an upregulation of the expression of proteins involved in oxidative stress protection, cell–cell adhesion and commitment to differentiation. These results highlight the effects of H2S-natural donors as biochemical factors that promote MSC homing, increasing their safety profile and efficacy after transplantation, and the value of these donors in developing functional 3D-stem cell delivery systems for cardiac muscle tissue repair and regeneration.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


2013 ◽  
Vol 4 ◽  
Author(s):  
Anuja K. Antony ◽  
Katherine Rodby ◽  
Matthew K. Tobin ◽  
Megan I. O’Connor ◽  
Russell K. Pearl ◽  
...  

2020 ◽  
Author(s):  
Jilong Zou ◽  
Jianyang Du ◽  
Hualei Tu ◽  
Hongjun Chen ◽  
Kai Cong ◽  
...  

Abstract Background Bone marrow mesenchymal stem cells (BMSCs) are multipotent progenitor cells and have been widely used in clinical therapies due to their multiple pluripotency. Recent publications have found that resveratrol (RSVL) could promote the proliferation and differentiation of mesenchymal stem cells; however, the underlying molecular mechanism of RSVL-induced BMSCs osteogenic differentiation needs to be fully elucidated. The aim of this study was to investigate the function of miRNAs in RSVL-treated BMSCs and its effects on the osteogenic differentiation of BMSCs. Methods BMSCs were cultured and treated with different concentrations of RSVL. After osteogenic differentiation for 20 days, ALP staining was performed to evaluate the ALP activity of BMSCs. And ARS staining was used to detect the matrix mineralization deposition of BMSCs. After adipogenic differentiation for 20 days, adipogenic differentiation was determined by ORO staining for lipid droplets. Quantitative real-time polymerase chain reaction analysis was performed to assess the expression level of target genes. Bioinformatics analysis and luciferase reporter assay was ultilized to examine the relationship between miR-320c and its target gene. Western blot assay was used to analyze the protein expression level of target gene. Results Our results demonstrated that RSVL could promote the osteogenic differentiation and suppressed the adipogenic differentiation of BMSCs in a dose-dependent manner. Besides, a novel regulatory axis containing miR-320c and its target Runx2 was found during the differentiation process of BMSCs under RSVL treatment. Overexpression of miR-320c inhibited the osteogenic differentiation, while knockdown of miR-320c promoted the osteogenic differentiation of BMSCs. In contrast, overexpression of miR-320c accelerated the adipogenic differentiation, while knockdown of miR-320c restrained the adipogenic differentiation of BMSCs. Our results confirm that Runx2 was the directly target of miR-320c in RSVL-promoted osteogenic differentiation of BMSCs. Conclusions The present study revealed that miR-320c might possess the potentials as a novel clinical target for medical intervention to regulate the biological functions of RSVL in BMSCs.


Author(s):  
Bin Feng ◽  
Lei Meng ◽  
Liming Luan ◽  
Zhihao Fang ◽  
Peng Zhao ◽  
...  

Ischemic cerebrovascular disease is a significant and common public health issue worldwide. The emerging roles of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) in ischemic neuronal injury continue to be investigated. The current study aimed to investigate the role of EV-derived miR-132 from MSCs in ischemic neuronal injury. EVs were initially isolated from bone MSCs (BMSCs) and subsequently evaluated. A middle cerebral artery occlusion (MCAO) mouse model was constructed with the neurological function evaluated through a series of neurological scores, a pole test, and a foot fault test. Histopathological changes, neuron viability, and apoptosis, as well as cerebral infarction, were detected by hematoxylin and eosin (HE) staining and 2,3,5-triphenyltetrazolium hydrochloride (TTC) staining. The targeting relationship between microRNA (miR)-132 and Activin receptor type IIB (Acvr2b) was further confirmed based on dual-luciferase reporter gene assay results. Loss- and gain-of-function assays were conducted to elucidate the role of miR-132, EV-derived miR-132, Acvr2b, and Smad2 in oxygen-glucose deprivation (OGD)-treated neurons, and in mice models. Neuronal cell viability and apoptosis were evaluated via Cell Counting kit-8 (CCK-8) and flow cytometry. Our results indicated that Acvr2b was highly expressed, while miR-132 was poorly expressed in the MCAO mice and OGD-treated neurons. Acvr2b silencing or upregulation of miR-132 led to an elevation in neuronal activity, decreased neuronal apoptosis, reduced expression of Bax, and cleaved-caspase 3, as well as increased Bcl-2 expression. Acvr2b expression was targeted and inhibited by miR-132. EV-derived Acvr2b promoted activation of phosphorylated-Smad2 (p-Smad2)/c-jun signaling pathway, ultimately inducing neuronal injury. Our study provides evidence demonstrating that the overexpression of c-jun inhibits the protective role of MSCs-derived EV-miR-132 in neuronal injury. Upregulation of EV-derived miR-132 released from MSCs attenuates ischemic neuronal injury by inhibiting Smad2/c-jun pathways via the suppression of Acvr2b.


2020 ◽  
Vol 29 ◽  
pp. 096368972090850 ◽  
Author(s):  
Bocheng Zhang ◽  
Xiaoyuan Tian ◽  
Jun Hao ◽  
Gang Xu ◽  
Weiguo Zhang

Mesenchymal stem cells (MSCs) are multipotent stem cells that have attracted increasing interest in the field of regenerative medicine. Previously, the differentiation ability of MSCs was believed to be primarily responsible for tissue repair. Recent studies have shown that paracrine mechanisms play an important role in this process. MSCs can secrete soluble molecules and extracellular vesicles (EVs), which mediate paracrine communication. EVs contain large amounts of proteins and nucleic acids, such as mRNAs and microRNAs (miRNAs), and can transfer the cargo between cells. The cargoes are similar to those in MSCs and are not susceptible to degradation due to the protection of the EV bimolecular membrane structure. MSC-EVs can mimic the biological characteristics of MSCs, such as differentiation, maturation, and self-renewal. Due to their broad biological functions and their ability to transfer molecules between cells, EVs have been intensively studied by an increasing number of researchers with a focus on therapeutic applications, especially those of EVs secreted by MSCs. In this review, we discuss MSC-derived EVs and their therapeutic potential in tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document