scholarly journals Inter-rater variability of three-dimensional fracture reduction planning according to the educational background

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Christoph Zindel ◽  
Philipp Fürnstahl ◽  
Armando Hoch ◽  
Tobias Götschi ◽  
Andreas Schweizer ◽  
...  

Abstract Background Computer-assisted three-dimensional (3D) planning is increasingly delegated to biomedical engineers. So far, the described fracture reduction approaches rely strongly on the performance of the users. The goal of our study was to analyze the influence of the two different professional backgrounds (technical and medical) and skill levels regarding the reliability of the proposed planning method. Finally, a new fragment displacement measurement method was introduced due to the lack of consistent methods in the literature. Methods 3D bone models of 20 distal radius fractures were presented to nine raters with different educational backgrounds (medical and technical) and various levels of experience in 3D operation planning (0 to 10 years) and clinical experience (1.5 to 24 years). Each rater was asked to perform the fracture reduction on 3D planning software. Results No difference was demonstrated in reduction accuracy regarding rotational (p = 1.000) and translational (p = 0.263) misalignment of the fragments between biomedical engineers and senior orthopedic residents. However, a significantly more accurate planning was performed in these two groups compared with junior orthopedic residents with less clinical experience and no 3D planning experience (p < 0.05). Conclusion Experience in 3D operation planning and clinical experience are relevant factors to plan an intra-articular fragment reduction of the distal radius. However, no difference was observed regarding the educational background (medical vs. technical) between biomedical engineers and senior orthopedic residents. Therefore, our results support the further development of computer-assisted surgery planning by biomedical engineers. Additionally, the introduced fragment displacement measure proves to be a feasible and reliable method. Level of Evidence Diagnostic Level II

2021 ◽  
Vol 11 ◽  
Author(s):  
Max Wilkat ◽  
Norbert Kübler ◽  
Majeed Rana

Curatively intended oncologic surgery is based on a residual-free tumor excision. Since decades, the surgeon’s goal of R0-resection has led to radical resections in the anatomical region of the midface because of the three-dimensionally complex anatomy where aesthetically and functionally crucial structures are in close relation. In some cases, this implied aggressive overtreatment with loss of the eye globe. In contrast, undertreatment followed by repeated re-resections can also not be an option. Therefore, the evaluation of the true three-dimensional tumor extent and the intraoperative availability of this information seem critical for a precise, yet substance-sparing tumor removal. Computer assisted surgery (CAS) can provide the framework in this context. The present study evaluated the beneficial use of CAS in the treatment of midfacial tumors with special regard to tumor resection and reconstruction. Therefore, 60 patients diagnosed with a malignancy of the upper jaw has been treated, 31 with the use of CAS and 29 conventionally. Comparison of the two groups showed a higher rate of residual-free resections in cases of CAS application. Furthermore, we demonstrate the use of navigated specimen taking called tumor mapping. This procedure enables the transparent, yet precise documentation of three-dimensional tumor borders which paves the way to a more feasible interdisciplinary exchange leading e.g. to a much more focused radiation therapy. Moreover, we evaluated the possibilities of primary midface reconstructions seizing CAS, especially in cases of infiltrated orbital floors. These cases needed reduction of intra-orbital volume due to the tissue loss after resection which could be precisely achieved by CAS. These benefits of CAS in midface reconstruction found expression in positive changes in quality of life. The present work was able to demonstrate that the area of oncological surgery of the midface is a prime example of interface optimization based on the sensible use of computer assistance. The fact that the system makes the patient transparent for the surgeon and the procedure controllable facilitates a more precise and safer treatment oriented to a better outcome.


2019 ◽  
Vol 32 (03) ◽  
pp. 241-249 ◽  
Author(s):  
Andrew Worth ◽  
Katherine Crosse ◽  
Andrew Kersley

Objective The aim of this study was to report the use of custom saw guides produced using computed tomographic imaging (CT), computer simulation and three-dimensional (3D) printing to aid surgical correction of antebrachial deformities in six dogs. Materials and Methods Antebrachial limb deformities in four small, and two large, breed dogs (seven limbs) were surgically corrected by a radial closing wedge ostectomy and ulnar osteotomy. The location and orientation of the wedge ostectomy were determined using CT data, computer-assisted planning and production of a saw guide in plastic using a 3D printer. At surgery, the guide was clamped to the surface of the radius and used to direct the oscillating saw blade. The resultant ostectomy was closed and stabilized with a bone plate. Results Five limbs healed without complications. One limb was re-operated due to a poorly resolved rotational component of the deformity. One limb required additional stabilisation with external fixation due to screw loosening. The owners of five dogs completed a Canine Orthopedic Index survey at a follow-up period of 37 to 81 months. The median preoperative score was 3.5 and the median postoperative score was 1, representing an overall positive effect of surgery. Radiographically, 5/7 limbs were corrected in the frontal plane (2/7 were under-corrected). Similarly, 5/7 limbs were corrected in the sagittal plane, and 2/7 were over-corrected in the sagittal place. Conclusions Computer-aided design and rapid prototyping technologies can be used to create saw guides to simplify one-stage corrective osteotomies of the antebrachium using internal fixation in dogs. Despite the encouraging results, accurate correction of rotational deformity was problematic and this aspect requires further development.


VCOT Open ◽  
2018 ◽  
Vol 01 (01) ◽  
pp. e12-e18
Author(s):  
Griselda Lam ◽  
Sun-Young Kim

Objective The main purpose of this study was to describe the use and benefits of 3-dimensional (3D) computer-assisted surgical planning (CASP) and printing in a complex articular fracture repair in a dog. Study Design Case report. Animals Client-owned dog. Results One dog with a closed, severely comminuted, distal femoral supracondylar and bicondylar fracture underwent a preoperative computed tomography scan. Three-dimensional CASP was performed using computer-aided design software. Three-dimensional CASP allowed for visualization of the fracture fragments and virtual surgery, including reduction of the fragments and implant placement. A 3D model of the affected femur was printed and a bone plate was pre-contoured to the model. Intraoperative fracture reduction and stabilization were performed without complications. Postoperative radiographs revealed successful execution of the planned procedure. Subsequent radiographs and clinical examination indicated that bone healing was achieved with return to normal function of the limb. Three-dimensional CASP and the printed 3D model allowed for improved understanding of the anatomical relationship between fracture fragments, preoperative implant selection and contouring, and the ability to practice fracture reduction and implant placement preoperatively. The model was also used for client education, and to teach students and residents. Conclusion Three-dimensional CASP and printed models are valuable tools in the preoperative planning of complex fracture repairs, educating clients and teaching students and residents.


2018 ◽  
Vol 23 (04) ◽  
pp. 479-486 ◽  
Author(s):  
Kosuke Shintani ◽  
Kenichi Kazuki ◽  
Masahiro Yoneda ◽  
Takuya Uemura ◽  
Mitsuhiro Okada ◽  
...  

Background: Three-dimensional computed tomography (3D-CT) imaging has enabled more accurate preoperative planning. The purpose of this study was to investigate the results of a novel, computer-assisted, 3D corrective osteotomy using prefabricated bone graft substitute to treat malunited fractures of the distal radius. Methods: We investigated 19 patients who underwent the computer-assisted 3D corrective osteotomy for a malunited fracture of the distal radius after the operation was stimulated with CT data. A prefabricated bone graft substitute corresponding to the patient’s bone defect was implanted and internal fixation was performed using a plate and screws. We compared postoperative radiographic parameters of the patient’s operated side with their sound side and analyzed clinical outcomes using Mayo wrist score. Results: All patients achieved bone union on X-ray imaging at final follow-up. The mean differences of palmar tilt, radial inclination and ulnar variance between the operation side and the sound side were 4.3°, 2.3° and 1.2 mm, respectively. The Mayo wrist score was fair in 4 patients and poor in 15 patients before surgery. At the final follow-up after surgery, the scores improved to excellent in 3 patients, good in 11 patients and fair in 5 patients. There were two patients with correction loss at the final follow-up, but no patient complained of hand joint pain. Conclusions: We believe that computer-assisted 3D corrective osteotomy using prefabricated bone graft substitute achieved good results because it worked as a guide to the accurate angle.


2011 ◽  
Vol 71 (4) ◽  
pp. 926-932 ◽  
Author(s):  
Lars Grossterlinden ◽  
Jakob Nuechtern ◽  
Philipp G. C. Begemann ◽  
Ina Fuhrhop ◽  
Jan P. Petersen ◽  
...  

2020 ◽  
Author(s):  
Kentaro Iwakiri ◽  
Yoichi Ohta ◽  
Yohei Ohyama ◽  
Yukihide Minoda ◽  
Akio Kobayashi ◽  
...  

Abstract Background Background: Stem anteversion is important in reducing postoperative complications in total hip arthroplasty (THA). THA utilizing the combined-anteversion theory requires stem anteversion angle (SAA) measurement intraoperatively; however, intraoperative SAA estimation is difficult for surgeons without computer-assisted navigation system. We evaluated the accuracy of the SAA measured intraoperatively using a newly developed device by comparing the three-dimensional measurements using postoperative computed tomography (CT).Materials & Methods In 127 hips in 127 patients who underwent unilateral THA at our hospital, we used our newly developed device that can be easily attached to rasping broach handles for measuring the SAA intraoperatively, which required the addition of the correction angle obtained in the preoperative epicondylar view. Postoperative SAA and its discrepancies from the measured intraoperative SAA with or without adding the correction angle were compared between the groups to evaluate the usefulness of the device.Results The intraoperative SAA measured by the device was 17.93 ± 7.53°. The true SAA measured on postoperative CT was 26.40 ± 9.73°. The discrepancy between the intraoperative SAA and true SAA was 8.94 ± 5.44° (without the correction angle), and 4.93 ± 3.85° (with the correction angle). Accuracy with a discrepancy of <5 degrees was achieved in 77 (60.6%) and <10 degrees was achieved in 113 (89.0%). The accuracy was unaffected by the stem placement angle (varus/valgus, or flexion/extension), or ipsilateral knee osteoarthritis.Conclusion The SAA measuring device, easily attachable to various rasping handles, is useful to measure the intraoperative SAA in a simple, economical, and noninvasive manner during THA.Level of Evidence Therapeutic Level IV.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanshi Liu ◽  
Hong Li ◽  
Jialin Liu ◽  
Xingpeng Zhang ◽  
Maimaiaili Yushan ◽  
...  

Abstract Background The hexapod external fixator (HEF), such as the Taylor spatial frame (TSF), offering the ability of multidirectional deformities correction without changing the structure, whereas there are so many parameters for surgeons to measure and subjective errors will occur inevitably. The purpose of this study was to evaluate the effectiveness of a new method based on computer-assisted three-dimensional (3D) reconstruction and hexapod external fixator for long bone fracture reduction and deformity correction without calculating the parameters needed by the traditional usage. Methods This retrospective study consists of 25 patients with high-energy tibial diaphyseal fractures treated by the HEF at our institution from January 2016 to June 2018, including 22 males and 3 females with a mean age of 42 years (range 14–63 years). Hexapod external fixator treatments were conducted to manage the multiplanar posttraumatic deformities with/without poor soft-tissue that were not suitable for internal fixation. Computer-assisted 3D reconstruction and trajectory planning of the reduction by Mimics were applied to perform virtual fracture reduction and deformity correction. The electronic prescription derived from the length changes of the six struts were calculated by SolidWorks. Fracture reduction was conducted by adjusting the lengths of the six struts according to the electronic prescription. Effectiveness was evaluated by the standard anteroposterior (AP) and lateral X-rays after reduction. Results All patients acquired excellent functional reduction and achieved bone union in our study. After correction, the mean translation (1.0 ± 1.1 mm) and angulation (0.8 ± 1.2°) on the coronal plane, mean translation (0.8 ± 1.0 mm) and angulation (0.3 ± 0.8°) on the sagittal plane were all less than those (6.1 ± 4.9 mm, 5.2 ± 3.2°, 4.2 ± 3.5 mm, 4.0 ± 2.5°) before correction (P < 0.05). Conclusions The computer-assisted three-dimensional reconstruction and hexapod external fixator-based method allows surgeons to conduct long bone fracture reduction and deformity correction without calculating the parameters needed by the traditional usage. This method is suggested to apply in those unusually complex cases with extensive soft tissue damage and where internal fixation is impossible or inadvisable.


Sign in / Sign up

Export Citation Format

Share Document