scholarly journals Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Giancarlo Bonora ◽  
Vijay Ramani ◽  
Ritambhara Singh ◽  
He Fang ◽  
Dana L. Jackson ◽  
...  

Abstract Background Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. Results Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a “bookmark” mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. Conclusions Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.

2020 ◽  
Author(s):  
Giancarlo Bonora ◽  
Vijay Ramani ◽  
Ritambhara Singh ◽  
He Fang ◽  
Dana Jackson ◽  
...  

AbstractMammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. In differentiated cells, contact decay profiles, which clearly distinguish the active and inactive X chromosomes, reveal loss of the inactive X-specific structure at mitosis followed by a rapid reappearance, suggesting a ‘bookkeeping’ mechanism. In differentiating embryonic stem cells, changes in contact decay profiles are detected in parallel on both the X chromosomes and autosomes, suggesting profound simultaneous reorganization. The onset of the inactive X-specific structure in single cells is notably delayed relative to that of gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Novel computational approaches to effectively align single-cell gene expression, chromatin accessibility, and 3D chromosome structure reveal that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.


2018 ◽  
Vol 20 (4) ◽  
pp. 1583-1589 ◽  
Author(s):  
Shun H Yip ◽  
Pak Chung Sham ◽  
Junwen Wang

Abstract Traditional RNA sequencing (RNA-seq) allows the detection of gene expression variations between two or more cell populations through differentially expressed gene (DEG) analysis. However, genes that contribute to cell-to-cell differences are not discoverable with RNA-seq because RNA-seq samples are obtained from a mixture of cells. Single-cell RNA-seq (scRNA-seq) allows the detection of gene expression in each cell. With scRNA-seq, highly variable gene (HVG) discovery allows the detection of genes that contribute strongly to cell-to-cell variation within a homogeneous cell population, such as a population of embryonic stem cells. This analysis is implemented in many software packages. In this study, we compare seven HVG methods from six software packages, including BASiCS, Brennecke, scLVM, scran, scVEGs and Seurat. Our results demonstrate that reproducibility in HVG analysis requires a larger sample size than DEG analysis. Discrepancies between methods and potential issues in these tools are discussed and recommendations are made.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S062-S062
Author(s):  
A Lewis ◽  
B Pan-Castillo ◽  
G Berti ◽  
C Felice ◽  
H Gordon ◽  
...  

Abstract Background Histone-deacetylase (HDAC) enzymes are a broad class of ubiquitously expressed enzymes that modulate histone acetylation, chromatin accessibility and gene expression. In models of Inflammatory bowel disease (IBD), HDAC inhibitors, such as Valproic acid (VPA) are proven anti-inflammatory agents and evidence suggests that they also inhibit fibrosis in non-intestinal organs. However, the role of HDAC enzymes in stricturing Crohn’s disease (CD) has not been characterised; this is key to understanding the molecular mechanism and developing novel therapies. Methods To evaluate HDAC expression in the intestine of SCD patients, we performed unbiased single-cell RNA sequencing (sc-RNA-seq) of over 10,000 cells isolated from full-thickness surgical resection specimens of non-SCD (NSCD; n=2) and SCD intestine (n=3). Approximately, 1000 fibroblasts were identified for further analysis, including a distinct cluster of myofibroblasts. Changes in gene expression were compared between myofibroblasts and other resident intestinal fibroblasts using the sc-RNA-seq analysis pipeline in Partek. Changes in HDAC expression and markers of HDAC activity (H3K27ac) were confirmed by immunohistochemistry in FFPE tissue from patient matched NSCD and SCD intestine (n=14 pairs). The function of HDACs in intestinal fibroblasts in the CCD-18co cell line and primary CD myofibroblast cultures (n=16 cultures) was assessed using VPA, a class I HDAC inhibitor. Cells were analysed using a variety of molecular techniques including ATAC-seq, gene expression arrays, qPCR, western blot and immunofluorescent protein analysis. Results Class I HDAC (HDAC1, p= 2.11E-11; HDAC2, p= 4.28E-11; HDAC3, p= 1.60E-07; and HDAC8, p= 2.67E-03) expression was increased in myofibroblasts compared to other intestinal fibroblasts subtypes. IHC also showed an increase in the percentage of stromal HDAC2 positive cells, coupled with a decrease in the percentage of H3K27ac positive cells, in the mucosa overlying SCD intestine relative to matched NSCD areas. In the CCD-18co cell line and primary myofibroblast cultures, VPA reduced chromatin accessibility at Collagen-I gene promoters and suppressed their transcription. VPA also inhibited TGFB-induced up-regulation of Collagen-I, in part by inhibiting TGFB1|1/SMAD4 signalling. TGFB1|1 was identified as a mesenchymal specific target of VPA and siRNA knockdown of TGFB1|1 was sufficient suppress TGFB-induced up-regulation of Collagen-I. Conclusion In SCD patients, class I HDAC expression is increased in myofibroblasts. Class I HDACs inhibitors impair TGFB-signalling and inhibit Collagen-I expression. Selective targeting of TGFB1|1 offers the opportunity to increase treatment specificity by selectively targeting meschenymal cells.


2020 ◽  
Author(s):  
Timothy J. Durham ◽  
Riza M. Daza ◽  
Louis Gevirtzman ◽  
Darren A. Cusanovich ◽  
William Stafford Noble ◽  
...  

AbstractRecently developed single cell technologies allow researchers to characterize cell states at ever greater resolution and scale. C. elegans is a particularly tractable system for studying development, and recent single cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns are useful for learning about gene function and give insight into the biochemical state of different cell types; however, in order to understand these cell types, we must also determine how these gene expression levels are regulated. We present the first single cell ATAC-seq study in C. elegans. We collected data in L2 larvae to match the available single cell RNA-seq data set, and we identify tissue-specific chromatin accessibility patterns that align well with existing data, including the L2 single cell RNA-seq results. Using a novel implementation of the latent Dirichlet allocation algorithm, we leverage the single-cell resolution of the sci-ATAC-seq data to identify accessible loci at the level of individual cell types, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation in the worm.


2019 ◽  
Author(s):  
Yang Wang ◽  
Peng Yuan ◽  
Zhiqiang Yan ◽  
Ming Yang ◽  
Ying Huo ◽  
...  

AbstractExtensive epigenetic reprogramming occurs during preimplantation embryo development and is accompanied by zygotic genome activation (ZGA) and first cell fate specification. Recent studies using single-cell epigenome sequencing techniques have provided global views of the dynamics of different epigenetic layers during this period. However, it remains largely unclear how the drastic epigenetic reprogramming contributes to transcriptional regulatory network. Here, we developed a single-cell multiomics sequencing technology (scNOMeRe-seq) that enables profiling of genome-wide chromatin accessibility, DNA methylation and RNA expression in the same individual cell with improved performance compared to that of earlier techniques. We applied this method to analyze the global dynamics of different molecular layers and their associations in mouse preimplantation embryos. We found that global DNA methylation remodeling facilitates the reconstruction of genetic lineages in early embryos and revealed that the gradual increases in heterogeneity among blastomeres are driven by asymmetric cleavage. Allele-specific DNA methylation pattern is maintained throughout preimplantation development and is accompanied by allele-specific associations between DNA methylation and gene expression in the gene body that are inherited from oocytes and sperm. Through integrated analyses of the collective dynamics between gene expression and chromatin accessibility, we constructed a ZGA-associated regulatory network and revealed coordination among multiple epigenetic layers, transcription factors (TFs) and repeat elements that instruct the proper ZGA process. Moreover, we found that inner cell mass (ICM)/trophectoderm (TE) lineage-associated cis-regulatory elements are stepwise activated in blastomeres during post-ZGA embryo stages. TE lineage-specific TFs play dual roles in promoting the TE program while repressing the ICM program, thereby separating the TE lineage from the ICM lineage. Taken together, our findings not only depict the first single-cell triple-omics map of chromatin accessibility, DNA methylation and RNA expression during mouse preimplantation development but also enhance the fundamental understanding of epigenetic regulation in early embryos.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Boying Gong ◽  
Yun Zhou ◽  
Elizabeth Purdom

AbstractA growing number of single-cell sequencing platforms enable joint profiling of multiple omics from the same cells. We present , a novel method that not only allows for analyzing the data from joint-modality platforms, but provides a coherent framework for the integration of multiple datasets measured on different modalities. We demonstrate its performance on multi-modality data of gene expression and chromatin accessibility and illustrate the integration abilities of by jointly analyzing this multi-modality data with single-cell RNA-seq and ATAC-seq datasets.


2017 ◽  
Author(s):  
Wei Vivian Li ◽  
Jingyi Jessica Li

The emerging single cell RNA sequencing (scRNA-seq) technologies enable the investigation of transcriptomic landscapes at single-cell resolution. The analysis of scRNA-seq data is complicated by excess zero or near zero counts, the so-called dropouts due to the low amounts of mRNA sequenced within individual cells. Downstream analysis of scRNA-seq would be severely biased if the dropout events are not properly corrected. We introduce scImpute, a statistical method to accurately and robustly impute the dropout values in scRNA-seq data. ScImpute automatically identifies gene expression values affected by dropout events, and only perform imputation on these values without introducing new bias to the rest data. ScImpute also detects outlier or rare cells and excludes them from imputation. Evaluation based on both simulated and real scRNA-seq data on mouse embryos, mouse brain cells, human blood cells, and human embryonic stem cells suggests that scImpute is an effective tool to recover transcriptome dynamics masked by dropout events. scImpute is shown to correct false zero counts, enhance the clustering of cell populations and subpopulations, improve the accuracy of differential expression analysis, and aid the study of gene expression dynamics.


2017 ◽  
Author(s):  
Joshua D. Welch ◽  
Alexander J. Hartemink ◽  
Jan F. Prins

AbstractSingle cell genomic techniques promise to yield key insights into the dynamic interplay between gene expression and epigenetic modification. However, the experimental difficulty of performing multiple measurements on the same cell currently limits efforts to combine multiple genomic data sets into a united picture of single cell variation. We show that it is possible to construct cell trajectories, reflecting the changes that occur in a sequential biological process, from single cell ATAC-seq, bisulfite sequencing, and ChIP-seq data. In addition, we present an approach called MATCHER that computationally circumvents the experimental difficulties inherent in performing multiple genomic measurements on a single cell by inferring correspondence between single cell transcriptomic and epigenetic measurements performed on different cells of the same type. MATCHER works by first learning a separate manifold for the trajectory of each kind of genomic data, then aligning the manifolds to infer a shared trajectory in which cells measured using different techniques are directly comparable. Using scM&T-seq data, we confirm that MATCHER accurately predicts true single cell correlations between DNA methylation and gene expression without using known cell correspondence information. We also used MATCHER to infer correlations among gene expression, chromatin accessibility, and histone modifications in single mouse embryonic stem cells. These results reveal the dynamic interplay between epigenetic changes and gene expression underlying the transition from pluripotency to differentiation priming. Our work is a first step toward a united picture of heterogeneous transcriptomic and epigenetic states in single cells.


Sign in / Sign up

Export Citation Format

Share Document