scholarly journals Positive regulation of Type III secretion effectors and virulence by RyhB paralogs in Salmonella enterica serovar Enteritidis

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Binjie Chen ◽  
Xianchen Meng ◽  
Jie Ni ◽  
Mengping He ◽  
Yanfei Chen ◽  
...  

AbstractSmall non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.

2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Kyungsub Kim ◽  
Alexander D. Palmer ◽  
Carin K. Vanderpool ◽  
James M. Slauch

ABSTRACTSalmonella entericaserovar Typhimurium induces inflammatory diarrhea and bacterial uptake into intestinal epithelial cells using theSalmonellapathogenicity island 1 (SPI1) type III secretion system (T3SS). HilA activates transcription of the SPI1 structural components and effector proteins. Expression ofhilAis activated by HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. Many environmental signals and other regulators are integrated into this regulatory loop, primarily via HilD. After the invasion ofSalmonellainto host intestinal epithelial cells or during systemic replication in macrophages, the SPI T3SS is no longer required or expressed. We have shown that the two-component regulatory system PhoPQ, required for intracellular survival, represses the SPI1 T3SS mostly by controlling the transcription ofhilAandhilD. Here we show that PinT, one of the PhoPQ-regulated small RNAs (sRNAs), contributes to this regulation by repressinghilAandrtsAtranslation. PinT base pairs with both thehilAandrtsAmRNAs, resulting in translational inhibition ofhilA, but also induces degradation of thertstranscript. PinT also indirectly represses expression of FliZ, a posttranslational regulator of HilD, and directly represses translation ofssrB, encoding the primary regulator of the SPI2 T3SS. Ourin vivomouse competition assays support the concept that PinT controls a series of virulence genes at the posttranscriptional level in order to adaptSalmonellafrom the invasion stage to intracellular survival.IMPORTANCESalmonellais one of the most important food-borne pathogens, infecting over one million people in the United States every year. These bacteria use a needle-like device to interact with intestinal epithelial cells, leading to invasion of the cells and induction of inflammatory diarrhea. A complex regulatory network controls expression of the invasion system in response to numerous environmental signals. Here we explore the molecular mechanisms by which the small RNA PinT contributes to this regulation, facilitating inactivation of the system after invasion. PinT controls several important virulence systems inSalmonella, tuning the transition between different stages of infection.


2009 ◽  
Vol 191 (22) ◽  
pp. 6918-6927 ◽  
Author(s):  
Aurel Negrea ◽  
Eva Bjur ◽  
Speranta Puiac ◽  
Sofia Eriksson Ygberg ◽  
Fredrik Åslund ◽  
...  

ABSTRACT The facultative intracellular pathogen Salmonella enterica serovar Typhimurium relies on its Salmonella pathogenicity island 2 (SPI2) type III secretion system (T3SS) for intracellular replication and virulence. We report that the oxidoreductase thioredoxin 1 (TrxA) and SPI2 are coinduced for expression under in vitro conditions that mimic an intravacuolar environment, that TrxA is needed for proper SPI2 activity under these conditions, and that TrxA is indispensable for SPI2 activity in both phagocytic and epithelial cells. Infection experiments in mice demonstrated that SPI2 strongly contributed to virulence in a TrxA-proficient background whereas SPI2 did not affect virulence in a trxA mutant. Complementation analyses using wild-type trxA or a genetically engineered trxA coding for noncatalytic TrxA showed that the catalytic activity of TrxA is essential for SPI2 activity in phagocytic cells whereas a noncatalytic variant of TrxA partially sustained SPI2 activity in epithelial cells and virulence in mice. These results show that TrxA is needed for the intracellular induction of SPI2 and provide new insights into the functional integration between catalytic and noncatalytic activities of TrxA and a bacterial T3SS in different settings of intracellular infections.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
A. Marijke Keestra ◽  
Maria G. Winter ◽  
Daisy Klein-Douwel ◽  
Mariana N. Xavier ◽  
Sebastian E. Winter ◽  
...  

ABSTRACTThe invasion-associated type III secretion system (T3SS-1) ofSalmonella entericaserotype Typhimurium (S. Typhimurium) activates the transcription factor NF-κB in tissue culture cells and induces inflammatory responses in animal models through unknown mechanisms. Here we show that bacterial delivery or ectopic expression of SipA, a T3SS-1-translocated protein, led to the activation of the NOD1/NOD2 signaling pathway and consequent RIP2-mediated induction of NF-κB-dependent inflammatory responses. SipA-mediated activation of NOD1/NOD2 signaling was independent of bacterial invasionin vitrobut required an intact T3SS-1. In the mouse colitis model, SipA triggered mucosal inflammation in wild-type mice but not in NOD1/NOD2-deficient mice. These findings implicate SipA-driven activation of the NOD1/NOD2 signaling pathway as a mechanism by which the T3SS-1 induces inflammatory responsesin vitroandin vivo.IMPORTANCESalmonella entericaserotype Typhimurium (S. Typhimurium) deploys a type III secretion system (T3SS-1) to induce intestinal inflammation and benefits from the ensuing host response, which enhances growth of the pathogen in the intestinal lumen. However, the mechanisms by which the T3SS-1 triggers inflammatory responses have not been resolved. Here we show that the T3SS-1 effector protein SipA induces NF-κB activation and intestinal inflammation by activating the NOD1/NOD2 signaling pathway. These data suggest that the T3SS-1 escalates innate responses through a SipA-mediated activation of pattern recognition receptors in the host cell cytosol.


Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2770-2781 ◽  
Author(s):  
Amanda L. S. Wisner ◽  
Taseen S. Desin ◽  
Birgit Koch ◽  
Po-King S. Lam ◽  
Emil M. Berberov ◽  
...  

Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) has been identified as a significant cause of salmonellosis in humans. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) each encode a specialized type III secretion system (T3SS) that enables Salmonella to manipulate host cells at various stages of the invasion/infection process. For the purposes of our studies we used a chicken isolate of S. Enteritidis (Sal18). In one study, we orally co-challenged 35-day-old specific pathogen-free (SPF) chickens with two bacterial strains per group. The control group received two versions of the wild-type strain Sal18: Sal18 attTn7 : : tet and Sal18 attTn7 : : cat, while the other two groups received the wild-type strain (Sal18 attTn7 : : tet) and one of two mutant strains. From this study, we concluded that S. Enteritidis strains deficient in the SPI-1 and SPI-2 systems were outcompeted by the wild-type strain. In a second study, groups of SPF chickens were challenged at 1 week of age with four different strains: the wild-type strain, and three other strains lacking either one or both of the SPI-1 and SPI-2 regions. On days 1 and 2 post-challenge, we observed a reduced systemic spread of the SPI-2 mutants, but by day 3, the systemic distribution levels of the mutants matched that of the wild-type strain. Based on these two studies, we conclude that the S. Enteritidis SPI-2 T3SS facilitates invasion and systemic spread in chickens, although alternative mechanisms for these processes appear to exist.


Sign in / Sign up

Export Citation Format

Share Document