t3ss effector
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 3)

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 880
Author(s):  
Kierra S. Hardy ◽  
Maxx H. Tessmer ◽  
Dara W. Frank ◽  
Jonathon P. Audia

Pseudomonas aeruginosa is an opportunistic, Gram-negative pathogen and an important cause of hospital acquired infections, especially in immunocompromised patients. Highly virulent P. aeruginosa strains use a type III secretion system (T3SS) to inject exoenzyme effectors directly into the cytoplasm of a target host cell. P. aeruginosa strains that express the T3SS effector, ExoU, associate with adverse outcomes in critically ill patients with pneumonia, owing to the ability of ExoU to rapidly damage host cell membranes and subvert the innate immune response to infection. Herein, we review the structure, function, regulation, and virulence characteristics of the T3SS effector ExoU, a highly cytotoxic phospholipase A2 enzyme.


2021 ◽  
Author(s):  
Alyssa C Fasciano ◽  
Gaya S Dasanayake ◽  
Mary K Estes ◽  
Nicholas C Zachos ◽  
David T Breault ◽  
...  

Many pathogens use M cells to access the underlying Peyers patches and spread to systemic sites via the lymph as demonstrated by ligated loop murine intestinal models. However, the study of interactions between M cells and microbial pathogens has stalled due to the lack of cell culture systems. To overcome this obstacle, we use human ileal enteroid-derived monolayers containing five intestinal cell types including M cells to study the interactions between the enteric pathogen, Yersinia pseudotuberculosis (Yptb) and M cells. The Yptb type three secretion system (T3SS) effector Yops inhibit host defenses including phagocytosis and are critical for colonization of the intestine and Peyers patches. Therefore, it is not understood how Yptb traverses through M cells to breach the epithelium. By growing Yptb under two physiological conditions that mimic the early infectious stage (low T3SS-expression) or host-adapted stage (high T3SS-expression), we found that large numbers of Yptb specifically associated with M cells, recapitulating murine studies. Transcytosis through M cells was significantly higher by Yptb expressing low levels of T3SS, because YopE and YopH prevented Yptb uptake. YopE also caused M cells to extrude from the epithelium without inducing cell-death or disrupting monolayer integrity. Sequential infection with early infectious stage Yptb reduced host-adapted Yptb association with M cells. These data underscore the strength of enteroids as a model by discovering that Yops impede M cell function, indicating that early infectious stage Yptb more effectively penetrates M cells while the host may defend against M cell penetration of host-adapted Yptb.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009658
Author(s):  
Cristina Giogha ◽  
Nichollas E. Scott ◽  
Tania Wong Fok Lung ◽  
Georgina L. Pollock ◽  
Marina Harper ◽  
...  

During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation.


2021 ◽  
Author(s):  
Lingzhi Zhang ◽  
Jiatiao Jiang ◽  
Jin Zhang ◽  
Xiaohong Liu ◽  
Dahai Yang ◽  
...  

Edwardsiella piscicida ( E. piscicida ) is an intracellular pathogen within a broad spectrum of hosts. Essential to E. piscicida virulence is its ability to invade and replicate inside host cells, yet the survival mechanisms and the nature of the replicative compartment remain unknown. Here, we characterized its intracellular lifestyle in non-phagocytic cells and showed that intracellular replication of E. piscicida in non-phagocytic cells is dependent on its type III secretion system but not type VI secretion system. Following internalization, E. piscicida is contained in vacuoles that transiently mature into early endosomes but subsequently bypasses the classical endosome pathway and fusion with lysosomes which depend on its T3SS. Following a rapid escape from the degradative pathway, E. piscicida was found to create a specialized replication-permissive niche characterized by endoplasmic reticulum (ER) markers. Furthermore, we found that a T3SS effector EseJ is responsible for intracellular replication of E. piscicida by preventing endosome/lysosome fusion. In vivo experiments also confirmed that EseJ is necessary for bacterial colonization of E. piscicida in the epithelial layer followed by systemic dissemination both in zebrafish and mice. Thus, this work elucidates the tactics used by E. piscicida to survive and proliferate within host non-phagocytic cells. IMPORTANCE E. piscicida is a facultative intracellular bacterium associated with septicemia and fatal infections in many animals, including fish and humans. However, little is known about its intracellular life, which is important for successful invasion of the host. The present study is the first comprehensive characterization of E. piscicida ’s intracellular life-style in host cells. Upon internalization, E. piscicida is transiently contained in Rab5-positive vacuoles, but the pathogen prevents further endosome maturation and fusion with lysosomes by utilizing a T3SS effector EseJ. In addition, the bacterium creates a specialized replication niche for rapid growth via an interaction with the ER. Our study provides new insights into the strategies used by E. piscicida to successfully establishes an intracellular lifestyle that contributes to its survival and dissemination during infection.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 589
Author(s):  
Md Kamrul Hasan ◽  
Samir El Qaidi ◽  
Philip R. Hardwidge

Whether type III secretion system (T3SS) effector proteins encoded by Gram-negative bacterial pathogens have intra-bacterial activities is an important and emerging area of investigation. Gram-negative bacteria interact with their mammalian hosts by using secretion systems to inject virulence proteins directly into infected host cells. Many of these injected protein effectors are enzymes that modify the structure and inhibit the function of mammalian proteins. The underlying dogma is that T3SS effectors are inactive until they are injected into host cells, where they then fold into their active conformations. We previously observed that the T3SS effectors NleB and SseK1 glycosylate Citrobacter rodentium and Salmonella enterica proteins, respectively, leading to enhanced resistance to environmental stress. Here, we sought to extend these studies to determine whether the T3SS effector protease NleC is also active within C. rodentium. To do this, we expressed the best-characterized mammalian substrate of NleC, the NF-κB p65 subunit in C. rodentium and monitored its proteolytic cleavage as a function of NleC activity. Intra-bacterial p65 cleavage was strictly dependent upon NleC. A p65 mutant lacking the known CE cleavage motif was resistant to NleC. Thus, we conclude that, in addition to NleB, NleC is also enzymatically active within C. rodentium.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009073
Author(s):  
Keiji Nakamura ◽  
Yoshitoshi Ogura ◽  
Yasuhiro Gotoh ◽  
Hayashi Tetsuya

Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via horizontal gene transfer. Multiple phages are often integrated in a host chromosome as prophages, not only carrying various novel virulence-related genetic determinants into host bacteria but also providing various possibilities for prophage-prophage interactions in bacterial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 prophages (up to 21 prophages), many of which encode type III secretion system (T3SS) effector gene clusters. In these strains, some prophages are present at a single locus in tandem, which is usually interpreted as the integration of phages that use the same attachment (att) sequence. Here, we present phages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages integrated into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages in a single cell. The identified attB sequences in prophage genomes are apparently derived from host chromosomes. In addition, two or three different attB sequences are present in some prophages, which results in the generation of prophage clusters in various complex configurations. These phages integrating into prophages represent a medically and biologically important type of inter-phage interaction that promotes the accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E. coli strains as well as other prophage-rich bacterial species.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Binjie Chen ◽  
Xianchen Meng ◽  
Jie Ni ◽  
Mengping He ◽  
Yanfei Chen ◽  
...  

AbstractSmall non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir El Qaidi ◽  
Nichollas E. Scott ◽  
Philip R. Hardwidge

AbstractType III secretion system effector proteins have primarily been characterized for their interactions with host cell proteins and their ability to disrupt host signaling pathways. We are testing the hypothesis that some effectors are active within the bacterium, where they modulate bacterial signal transduction and physiology. We previously determined that the Citrobacter rodentium effector NleB possesses an intra-bacterial glycosyltransferase activity that increases glutathione synthetase activity to protect the bacterium from oxidative stress. Here we investigated the potential intra-bacterial activities of NleB orthologs in Salmonella enterica and found that SseK1 and SseK3 mediate resistance to methylglyoxal. SseK1 glycosylates specific arginine residues on four proteins involved in methylglyoxal detoxification, namely GloA (R9), GloB (R190), GloC (R160), and YajL (R149). SseK1-mediated Arg-glycosylation of these four proteins significantly enhances their catalytic activity, thus providing another important example of the intra-bacterial activities of type three secretion system effector proteins. These data are also the first demonstration that a Salmonella T3SS effector is active within the bacterium.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingyan Jiang ◽  
Peisheng Wang ◽  
Xiaorui Song ◽  
Huan Zhang ◽  
Shuangshuang Ma ◽  
...  

AbstractSalmonella Typhimurium establishes systemic infection by replicating in host macrophages. Here we show that macrophages infected with S. Typhimurium exhibit upregulated glycolysis and decreased serine synthesis, leading to accumulation of glycolytic intermediates. The effects on serine synthesis are mediated by bacterial protein SopE2, a type III secretion system (T3SS) effector encoded in pathogenicity island SPI-1. The changes in host metabolism promote intracellular replication of S. Typhimurium via two mechanisms: decreased glucose levels lead to upregulated bacterial uptake of 2- and 3-phosphoglycerate and phosphoenolpyruvate (carbon sources), while increased pyruvate and lactate levels induce upregulation of another pathogenicity island, SPI-2, known to encode virulence factors. Pharmacological or genetic inhibition of host glycolysis, activation of host serine synthesis, or deletion of either the bacterial transport or signal sensor systems for those host glycolytic intermediates impairs S. Typhimurium replication or virulence.


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3000986
Author(s):  
Qiyun Zhong ◽  
Theodoros I. Roumeliotis ◽  
Zuza Kozik ◽  
Massiel Cepeda-Molero ◽  
Luis Ángel Fernández ◽  
...  

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Sign in / Sign up

Export Citation Format

Share Document